• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A tadpole with a twist: Left-right asymmetric development of Oikopleura dioica

Bioengineer by Bioengineer
February 27, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Osaka University find that a tadpole-like tunicate with nonconventional left-right patterning lacks the Nodal gene found in other chordates and uses Ca2+ oscillation and right-sided Bmp gene expression in embryonic development

IMAGE

Credit: Osaka University


Osaka, Japan – How does a developing embryo, which is initially round, tell left from right? This basic process is still poorly understood. However, investigating unusual cases can help shed light on how this process occurs in animals. More than a century ago, German biologist Dr. H. C. Delsman described unusual left-right (L-R) patterning in the tadpole-like tunicate Oikopleura dioica. Now, researchers at Osaka University have uncovered the details of this process in O. dioica, reported in a new study published in the Proceedings of the National Academy of Sciences.

Bilateral symmetry is one the most fundamental characteristics of members of the phylum Chordata, the group that includes O. dioica as well as all animals with backbones, although L-R patterning tends to emerge later in development. However, in the larvacean tunicate O. dioica, distinct from other chordates, L-R asymmetry first appears in the four-cell embryo stage and persists throughout development; the nerve cord, typically located on the dorsal side of chordates, forms instead on the animal’s left side. This notable difference provides an opportunity to investigate the mechanisms that drive L-R patterning in chordates.

“Our study reveals that this larvacean uses calcium ion oscillation and expression of the right-sided bone morphogenetic protein (Bmp) gene for embryonic left-right patterning,” explains first author Takeshi A. Onuma. “Intriguingly, Nodal, an evolutionarily conserved left-determining gene found in other chordates, is absent from the genome of O. dioica. As the larvacean develops, it is likely that its tail twists 90° counterclockwise relative to its trunk, with the tail nerve cord localized on its left side.”

In most chordates, Nodal and Bmp create the gradient responsible for L-R determination in the developing embryo. The absence of Nodal, combined with the novel and early L-R patterning of this larvacean, is therefore of great interest for advancing understanding of the roles of Nodal, Bmp, and calcium ion oscillation, and the evolution of L-R patterning in early chordates.

According to senior author Hiroki Nishida, “between insects and vertebrates, the dorsal-ventral axis is inverted 180°, which is correlated with Bmp expression. However, the reason for this inversion is not yet well understood. In addition to revealing a novel left-right patterning process of a chordate species, our findings provide an example where the dorsal-ventral axis and Bmp expression lead to 90° rotation with left-right patterning.”

Such examples of novel L-R patterning are key for unraveling some of the most fundamental questions about the earliest evolution and development of chordates and other animals.

###

The article, “A chordate species lacking Nodal utilizes calcium oscillation and Bmp for left-right patterning,” was published in the Proceedings of the National Academy of Sciences at DOI: https://doi.org/10.1073/pnas.1916858117

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]
81-661-055-886

Related Journal Article

http://dx.doi.org/10.1073/pnas.1916858117

Tags: BiochemistryBiologyCell BiologyDevelopmental/Reproductive BiologyEvolutionGenesGeneticsMarine/Freshwater BiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Sex and Menopause Influence Brainstem Connectivity Differences

September 6, 2025

EGCG Reduces Diazinon Neurotoxicity Through Gene Regulation

September 6, 2025

Modeling Ideal Multifactorial Treatments for Kidney Disease

September 6, 2025

Targeting the Endocannabinoidome-Gut-Microbiome Axis in Autism

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex and Menopause Influence Brainstem Connectivity Differences

EGCG Reduces Diazinon Neurotoxicity Through Gene Regulation

Transcriptome Analysis of Muscle Disorders in Broiler Chickens

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.