• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A symbiosis in the open ocean

Bioengineer by Bioengineer
June 27, 2023
in Biology
Reading Time: 2 mins read
0
Symbiosis
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study explores the genetic expression of a photosynthetic symbiont that lives inside an abundant marine organism. Marine diatoms are responsible for one-fifth of global photosynthesis. Many are coastal, but diatom-diazotroph associations thrive in open ocean waters that are low in nutrients thanks to a symbiotic relationship between a diatom host and nitrogen-fixing bacteria. Rachel Foster, Enrique Flores, and colleagues collected the diatom Hemiaulus hauckii, along with the cyanobacterium Richelia euintracellularis, which lives inside the diatom’s cells, from multiple locations in the western tropical North Atlantic. Cyanobacteria are bacteria which can perform plant-like photosynthesis. As researchers are currently unable to grow Richelia euintracellularis in the laboratory, the authors explored the function of proteins found in the endosymbiont by expressing the proteins in model organisms, including Escherichia coli and Anabaena sp. One protein was found to split sucrose into glucose and fructose. The presence of a sucrose-specific solute binding protein, which participates in shuttling molecules across the cell membrane, suggests that the sucrose is provided to the bacteria by the diatom hosts. Other solute binding proteins were found that participate in the transport of amino acids (glutamate, phenylalanine) and a polyamine (spermidine). The expression of genes that encode these proteins was verified in wild populations from the Atlantic Ocean. According to the authors, the study paints a picture of a system in which the diatom supplies the bacteria with reduced organic carbon compounds to sustain a high rate of nitrogen fixation.

Symbiosis

Credit: Sepehr Bardi

A study explores the genetic expression of a photosynthetic symbiont that lives inside an abundant marine organism. Marine diatoms are responsible for one-fifth of global photosynthesis. Many are coastal, but diatom-diazotroph associations thrive in open ocean waters that are low in nutrients thanks to a symbiotic relationship between a diatom host and nitrogen-fixing bacteria. Rachel Foster, Enrique Flores, and colleagues collected the diatom Hemiaulus hauckii, along with the cyanobacterium Richelia euintracellularis, which lives inside the diatom’s cells, from multiple locations in the western tropical North Atlantic. Cyanobacteria are bacteria which can perform plant-like photosynthesis. As researchers are currently unable to grow Richelia euintracellularis in the laboratory, the authors explored the function of proteins found in the endosymbiont by expressing the proteins in model organisms, including Escherichia coli and Anabaena sp. One protein was found to split sucrose into glucose and fructose. The presence of a sucrose-specific solute binding protein, which participates in shuttling molecules across the cell membrane, suggests that the sucrose is provided to the bacteria by the diatom hosts. Other solute binding proteins were found that participate in the transport of amino acids (glutamate, phenylalanine) and a polyamine (spermidine). The expression of genes that encode these proteins was verified in wild populations from the Atlantic Ocean. According to the authors, the study paints a picture of a system in which the diatom supplies the bacteria with reduced organic carbon compounds to sustain a high rate of nitrogen fixation.



Journal

PNAS Nexus

DOI

10.1093/pnasnexus/pgad194

Article Title

Heterologous expression of genes from a cyanobacterial endosymbiont highlights substrate exchanges with its diatom host

Article Publication Date

27-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Copper Detection with Iron Oxide-Graphite Sensors

Micro-LEDs Drive Transparent, Free-Form, Near-Eye Displays

Key Drivers of Corporate Governance in Burundi’s Cooperatives

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.