• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A step towards probabilistic computing

Bioengineer by Bioengineer
May 14, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

Credit: Working group of Professor Ulrich Nowak, University of Konstanz

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are still lengths ahead of it: An example is signal processing, which plays an important role in autonomous driving. In the search for new computer concepts that are closer to the human brain, research is concentrating, amongst others, on probability-based computing. Together with his team, physicist Professor Ulrich Nowak from the University of Konstanz is investigating how these computers of the future can be made possible by using what are known as skyrmions, i.e. magnetic vortex-like configurations, as bit units. In collaboration with physicists from Johannes Gutenberg University Mainz, the researchers have now been able to show both in theory and experimentally how magnetic vortices can be used for new computing methods. The results were published in the current issue of the scientific journal Nature Nanotechnology.

In waking state, humans continually perceive everything going on around them. This perception generates data streams that the brain analyses on an ongoing basis. For example, if a sound becomes louder and louder, from a certain threshold upwards it might be identified as the danger of an object flying towards you. The brain does not react to specific numerical values but instead to signals that occur with certain probabilities. As with the quantum computer, it is hoped that the future generation of computers, which uses skyrmions to process and store data streams, will offer far higher storage capacity, speed and energy efficiency. Indeed, the stable magnetic skyrmions also have the advantage that they make computing with random signals conceivable.

The working group in Mainz led by Professor Mathias Kläui has succeeded in developing a material in which skyrmions can form. The researchers have also developed a method to exploit thermal diffusion of skyrmions in what is referred to as a reshuffler, a component needed for probabilistic computing. Ulrich Nowak’s team was able to show in a simulation that the skyrmions observed indeed behaved like particles and moved around randomly in the plane, similarly to atoms that distribute themselves in gas or liquid at finite temperature.

This property is used for the reshuffler. “We have shown according to which laws diffusion occurs, its length and time scales and that it can be measured,” said Ulrich Nowak, summarizing the Konstanz researchers’ contribution to the joint project. Up until now, there have been no quantitative predictions for this. Only the combination of the measurements performed by Nowak’s colleagues in Mainz and the simulations conducted in Konstanz has shown the relevance of skyrmion diffusion. Since skyrmions can be produced and rearranged by means of electric currents, they are suitable candidates for a reshuffler.

What is understood by a reshuffler is a component of probability-based computing that automatically scrambles input data like a kind of mixer. The reshuffler produces a sequence with the same number of memory units but in a different order. Their probability has therefore remained the same.

###

Key facts:

* Original publication: Jakub Zázvorka, Florian Jakobs, Daniel Heinze, Niklas Keil, Sascha Kromin, Samridh Jaiswal, Kai Litzius, Gerhard Jakob, Peter Virnau, Daniele Pinna, Karin Everschor-Sitte, Levente Rózsa, Andreas Donges, Ulrich Nowak & Mathias Kläui: Thermal skyrmion diffusion used in a reshuffler device. Nature Nanotechnology, 22 April 2019. DOI: https://doi.org/10.1038/s41565-019-0436-8

* Collaboration between the working groups led by Professor Ulrich Nowak at the University of Konstanz and his colleague Professor Mathias Kläui from Johannes Gutenberg University Mainz. Mathias Kläui worked at the University of Konstanz from 2003 to 2008, earning his habilitation (postdoctoral qualification) at the University of Konstanz in 2008.

* Combination of measurements from Mainz with simulations from Konstanz show the relevance of skrymion diffusion.

* The research work by the University of Konstanz was funded in the framework of the “Skyrmionics” Priority Programme of the German Research Foundation and Collaborative Research Centre (CRC) 767 of the University of Konstanz.

Note to editors:

You can download a photo here:
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/ein_schritt_skyrmionenmixer.jpg

Caption: The reshuffler works like a skyrmion mixer: A specific initial sequence is entered and the outcome is a randomly altered sequence of output states.

Copyright: Working group of Professor Ulrich Nowak, University of Konstanz

Film: Computer simulation of diffusive skyrmion motion in a thin magnetic film.

http://www.uni-konstanz.de/broschueren/video/ein_schritt_diffusionmovie.mov

Copyright: Working group of Professor Ulrich Nowak, University of Konstanz

Contact

University of Konstanz

Communications and Marketing

Phone: + 49 7531 88-3603

E-Mail: [email protected]

Media Contact
Julia Wandt
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41565-019-0436-8

Tags: Chemistry/Physics/Materials SciencesMathematics/StatisticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New AI Technology Revolutionizes Visualization Inside Fusion Energy Systems

October 1, 2025
Urban Air Harbors Pathogenic Yeast Strains Absent from Coastal Areas

Urban Air Harbors Pathogenic Yeast Strains Absent from Coastal Areas

October 1, 2025

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

October 1, 2025

Atom-photon entanglement breakthrough opens new horizons for future quantum networks

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cathepsin S: Key to Cancer Energy Metabolism

Neonatal Morbidity in Early Fetal Growth Restriction: Anticoagulants’ Role

Prognostic Model for Colorectal Cancer Developed

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.