• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A step closer to cancer precision medicine

Bioengineer by Bioengineer
November 14, 2019
in Health
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Helsinki


Researchers from the Faculty of Medicine and the Institute for Molecular Medicine (FIMM) at the University of Helsinki have developed a computational model, Combined Essentiality Scoring (CES) that enables accurate identification of essential genes in cancer cells for development of anti-cancer drugs.

Why are the essential genes important in cancer?

Cancer is the leading cause of death worldwide. Cancer cells grow faster usually with the activation of certain genes. Targeted therapies aim at inhibiting these genes that are activated only in cancer cells, and thus minimizing side effects to normal cells.

High-throughput genetic screening has been established for evaluating the importance of individual genes for the survival of cancer cells. Such an approach allows researchers to determine the so-called gene essentiality scores for nearly all genes across a large variety of cancer cell lines.

However, challenges with replicability of the estimated gene essentiality have hindered its use for drug target discovery.

“shRNA and CRISPR-Cas9 are the two common techniques used to perform high-throughput genetic screening. Despite improved quality control, the gene essentiality scores from these two techniques differ from each other on the same cancer cell lines,” explains Wenyu Wang, first author of the study.

How can we do better?

To harmonize genetic screening data, researchers proposed a novel computational method called Combined Essentiality Scoring (CES) that predicts cancer essential genes using the information from shRNA and CRISPR-Cas9 screens plus molecular features of cancer cells. The team demonstrated that CES could detect essential genes with higher accuracy than the existing computational methods. Furthermore, the team showed that two predicted essential genes were indeed correlated with poor prognosis separately for breast cancer and leukaemia patients, suggesting their potential as drug targets (Figure 1).

“Improving gene essentiality scoring is just a beginning. Our next aim is to predict drug-target interactions by integrating drug sensitivity and gene essentiality profiles. Given the ever-increasing volumes of functional screening datasets, we hope to extend our knowledge of drug target profiles that will eventually benefit drug discovery in personalized medicine,” says Assistant Professor Jing Tang, corresponding author of the study.

###

Media Contact
Assistant Professor Jing Tang
[email protected]

Original Source

https://www.helsinki.fi/en/news/health-news/a-step-closer-to-cancer-precision-medicine

Related Journal Article

http://dx.doi.org/10.1016/j.ebiom.2019.10.051

Tags: cancerGenesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

July 30, 2025
Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Processing Environments Shape Food-Related Antibiotic Resistome

Multi-Proteomic Analysis Reveals Host Risks in VZV

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.