• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A stem cell based cell culture model for nonalcoholic fatty liver disease

Bioengineer by Bioengineer
January 25, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recent publication in Biology Open

IMAGE

Credit: Dr. Nina Graffmann, University Hospital Duesseldorf

Nonalcoholic fatty liver disease (NAFLD) is a widespread condition in the Western World. Around 30% of the population have lipid droplets stored in their liver which diminish its function in the long term. Main causes for NAFLD are our high-caloric diet in combination with a sedentary lifestyle. Hitherto, researchers have not fully understood the cause of this disease and despite the high number of affected individuals, there is no approved therapy.

In order to improve our understanding of the basic mechanisms underlying the etiology of NAFLD, Dr. Nina Graffmann, Prof. James Adjaye and the team of the Institute for Stem Cell research and Regenerative Medicine from the University Hospital Duesseldorf differentiated induced pluripotent stem cells (iPSCs) derived from healthy donors and NAFLD patients into hepatocyte-like cells (HLCs). The HLCs were stimulated with fatty acids to mimic a scenario where an individual consumes excess fat in their diet. The lipid droplets produced in HLCs are akin to lipid droplets seen in the livers of NAFLD patients.

The analysis of fat incorporation was carried out in collaboration with Prof. Beller of the Systems Biology of Lipid Metabolism group – Heinrich-Heine-University Duesseldorf, Germany.

The recent publication in Biology Open (Publisher-Company of Biologists) demonstrates a strong heterogeneity between cell lines, regarding gene expression and lipid droplet morphology. The scientists think that this is due to the plethora of metabolic networks involved in the development of the disease. It also mirrors the multifaceted, patient-dependent phenotypes which make NAFLD a highly complex disease as the group has shown in an earlier study (Wruck et al, 2015). Nonetheless, the scientists could identify gene expression patterns that correlate with disease severity.

Adiponectin is a molecule synthesized by human fat cells, which has been shown to positively influence hepatocyte metabolism. In the institute for Organic Chemistry and Macromolecular Chemistrymof Heinrich-Heine-University Duesseldorf, Prof. Constantin Czekelius and his team produced a synthetic analogue called AdipoRon for this study. AdipoRon has been first used in mice, were it had a significant anti-diabetic effect (Okada-Iwabu et al, 2013).

Treating HLCs with AdipoRon again resulted in cell line / genetic background specific effects. In addition, AdipoRon affected transcription of genes associated with metabolism, transport, immune system, cell stress and signalling.

“We could recapitulate important aspects of NAFLD with our stem cell based cell culture model. We are going to use it for further studies, because established animal models cannot reproduce the complex human metabolic pathways involved in the development of the disease,” explains Dr. Graffmann.

“Once again we have shown that although iPSC- derived hepatocyte-like cells are immature in nature, i.e. fetal, these cells still have immense usefulness in their application in drug discovery and for dissecting disease mechanisms such as NAFLD” says Prof. James Adjaye.

###

References:

Graffmann, N., Ncube, A., Martins, S., Fiszl, A., Reuther, P., Bohndorf, M., Wruck, W., Beller, M., Czekelius, C. & Adjaye, J. (2020) A stem cell based in vitro model of NAFLD enables the analysis of patient specific individual metabolic adaptations in response to a high fat diet and AdipoRon interference. Biology open.

Okada-Iwabu, M., Yamauchi, T., Iwabu, M., Honma, T., Hamagami, K., Matsuda, K., Yamaguchi, M., Tanabe, H., Kimura-Someya, T., Shirouzu, M., Ogata, H., Tokuyama, K., Ueki, K., Nagano, T., Tanaka, A., Yokoyama, S. & Kadowaki, T. (2013) A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature, 503(7477), 493-9.

Wruck, W., Graffmann, N., Kawala, M. A. & Adjaye, J. (2017) Concise Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty Liver Disease. Stem Cells, 35(1), 89-96.

Wruck, W., Kashofer, K., Rehman, S., Daskalaki, A., Berg, D., Gralka, E., Jozefczuk, J., Drews, K., Pandey, V., Regenbrecht, C., Wierling, C., Turano, P., Korf, U., Zatloukal, K., Lehrach, H., Westerhoff, H. V. & Adjaye, J. (2015) Multi-omic profiles of human non-alcoholic fatty liver disease tissue highlight heterogenic phenotypes. Scientific Data, 2, 150068.

Media Contact
Susanne Dopheide
[email protected]

Original Source

https://bio.biologists.org/content/biolopen/early/2020/12/09/bio.054189.full.pdf

Tags: EndocrinologyInternal MedicineLiverMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

How Gene-Diet Interactions Shape the Body’s Daily Rhythms

August 25, 2025

Immersive VR Enhances Nursing Students’ Birth Simulation

August 25, 2025

Vitamin D Levels and Insulin Resistance in Type 2 Diabetes

August 25, 2025

Evaluating the Precision of Sinocare’s Glucose Monitor

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    144 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Driven Innovation: Mount Sinai Researchers Develop Advanced Tool for Enhanced Cancer Tissue Analysis

How Gene-Diet Interactions Shape the Body’s Daily Rhythms

Immersive VR Enhances Nursing Students’ Birth Simulation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.