• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A sole mate to prevent diabetic foot ulcers

Bioengineer by Bioengineer
May 22, 2020
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New cooling insoles developed by UTSW scientists reduce foot temperature, diminishing the risk of tissue breakdown that could contribute to diabetic amputations

IMAGE

Credit: UTSW

DALLAS – May 21, 2020 – A new cooling insole developed by UT Southwestern scientists reduced the foot temperature of patients with diabetic neuropathy by several degrees, diminishing a significant risk factor for diabetic foot ulcers. This new device, detailed in an article published online ahead of print May 6 in The Journal of Foot & Ankle Surgery, could eventually prevent thousands of amputations that take place worldwide each year because of this condition.

Just in the U.S., more than 100,000 lower extremity amputations take place every year, many of them prompted by diabetic foot ulcers. These ulcers are associated with numerous quality-of-life and health consequences, including a mortality rate of 50 percent within five years for patients who develop them. Although the exact cause of this common diabetes complication is unclear, high foot pressure has long been considered a prevailing cause. Consequently, the most prescribed preventive treatment for diabetic foot ulcers is pressure-relieving insoles.

However, says Metin Yavuz, D.Eng., an associate professor in the School of Health Professions’ Division of Prosthetics and Orthotics at UT Southwestern Medical Center, this prophylactic intervention isn’t accomplishing its goal, since diabetic amputation rates have been on the rise despite widely available pressure-reliving insoles. “Even when patients receive therapeutic shoes and insoles, education, and close monitoring,” he says, “30 to 40 percent of patients who have had one diabetic foot ulcer will still develop another within a year.”

Hoping to decrease these numbers, Yavuz and his colleagues focused on another risk factor for these ulcers: foot temperature. Animal studies have shown that skin maintained between 25 and 30 degrees C is less likely to break down under pressure than skin at higher temperatures. The feet of diabetic patients already tend to be warmer due to inflammation associated with the disease, Yavuz explains, compounded by friction from walking and the stiff therapeutic shoes that patients wear, which are usually made of synthetic materials that act as heat insulators.

“We thought, why don’t we break that vicious cycle by cooling the foot?” he says.

To do that, Yavuz and his lab, aided by a pilot grant from UTSW’s Center for Translational Medicine, developed a system that circulates cool water into pressure-relieving insoles. The device, which the researchers named Temperature and Pressure Monitoring and Regulating Insoles (TAPMARI), consists of a small box strapped to the wearer’s calf that houses a cooling unit, a small water pump, a battery pack, and a thermostat. The cooling unit harnesses a type of thermoelectric cooling called the Peltier effect to chill water to a desired temperature that’s then pumped into insoles placed in the wearer’s shoes. Yavuz later teamed up with the engineering company Vivonics Inc. and obtained funding from the National Institutes of Health to improve the design.

The researchers tested the improved device in eight volunteers: one man and seven women of a median age of 45 years. Five of these volunteers were healthy and three had diabetic neuropathy.

Using an infrared thermal camera, the researchers took photos of the subjects’ feet at baseline before wearing the insoles, then placed a cooling insole in only their right shoes. They took more thermal photos after the subjects walked five minutes on a treadmill and again after they wore the insoles an additional two hours and walked five minutes on the treadmill again.

Results showed that the mean baseline foot temperature in the group was 28.1 degrees C. Mean foot temperatures at the end of the study were 31.7 degrees C for the left foot and 25.9 degrees C for the right, which was cooled by TAPMARI. Although the diabetics’ feet got warmer than those of the healthy volunteers during walking, they still maintained a mean temperature of 27.5 degrees C in the right foot, suggesting that the insoles could maintain temperature in a range that protects against skin breakdown.

Cool temperatures from the insoles didn’t cause vasoconstriction (narrowing of blood vessels) in the foot, which could have damaged tissue, Yavuz says. However, sole temperatures reached as high as 30.8 degrees C in some regions of the cooled feet, particularly in the midfoot, suggesting that the design of the insole needs to be improved. Other design elements could also be tweaked, he says, such as reducing the size of the unit worn on the calf.

Eventually, Yavuz says, these devices could change the course for patients with diabetes, preventing this common and often serious complication.

“Diabetic foot ulcers can be a major burden on patients, their families, caregivers, and the health system,” he says. “What we’re doing now to prevent these ulcers or simply maintain the status quo isn’t working. TAPMARI could be the start of a whole new approach.”

Other researchers who contributed to this study include Ali Ersen and Lawrence A. Lavery of UTSW; Aakshita Monga and Yasser Salem of the University of North Texas Health Science Center; Alan Garrett of the John Peter Smith Hospital; and Gordon B. Hirschman and Ryan Myers of Vivonics Inc.

###

This research was possible due to support from the National Institutes of Health under grant number: 1R43DK109858-01A1. None of the funding or supportive agencies were involved in the design or conduct of the study; collection, management, analysis, or interpretation of the data; or preparation, review, or approval of the manuscript. Yavuz, Hirschman, and Ersen have a patent pending on TAPMARI.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution’s faculty has received six Nobel Prizes, and includes 25 members of the National Academy of Sciences, 16 members of the National Academy of Medicine, and 14 Howard Hughes Medical Institute Investigators. The full-time faculty of more than 2,500 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 105,000 hospitalized patients, nearly 370,000 emergency room cases, and oversee approximately 3 million outpatient visits a year.

Media Contact
Newsroom
[email protected]

Original Source

https://www.utsouthwestern.edu/newsroom/articles/year-2020/a-sole-mate-to-prevent-diabetic-foot-ulcers.html

Related Journal Article

http://dx.doi.org/10.1053/j.jfas.2019.05.009

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Tirzepatide Enhances Blood Sugar Regulation in Adolescents with Type 2 Diabetes Unresponsive to Current Treatments (SURPASS-PEDS Trial)

September 18, 2025

Texas A&M Researchers Develop Innovative Cryopreservation Technique to Stop Organ Cracking

September 18, 2025

Optimizing Geriatric Care: Staff Insights on Patient Mobilization

September 18, 2025

Researchers Pinpoint Potential Therapeutic Targets in Pediatric Germ Cell Tumors

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tirzepatide Enhances Blood Sugar Regulation in Adolescents with Type 2 Diabetes Unresponsive to Current Treatments (SURPASS-PEDS Trial)

Emerging Research Links Microplastics to Potential Risks for Bone Health

Early Universe Galaxies Unveil Hidden Dark Matter Maps

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.