• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 8, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Tissue Engineering

A scalable platform for growing heart muscle cells may lead to repair of damaged heart cells

Bioengineer by Bioengineer
January 21, 2015
in Tissue Engineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The ability to grow human heart muscle cells in bulk could help routine replacement of heart cells damaged during a heart attack and may also improve testing of pharmaceutical drugs on heart cells, shows A*STAR research1.

Cardiovascular diseases such as heart attacks and strokes are the world’s leading causes of death. During a heart attack some of the heart muscle cells become starved of blood and die. These cells are rarely replaced due to the heart’s limited regenerative ability, which means that patients have to live with the limitations of a damaged heart.

Steve Oh led a team of researchers from the A*STAR Bioprocessing Technology Institute in designing a prototype ‘platform’ that enables heart muscle cells, or cardiomyocytes, to be produced from human pluripotent stem cells. Oh believes that this platform could be scaled up to industrial production levels2.

“The key is to be able to produce these cells in bulk,” says Oh. “Eventually we will be able to produce trillions of cells, but our current work involves developing the prototype process that is generating hundreds of millions of cells per batch.”

Traditionally, tissue culture is grown on a flat plate, but Oh’s team used ‘microcarriers’ — tiny polystyrene spheres that are electrically charged and coated with a protein — as the base for their culture (see image).

“Stem cells like to grow as clusters,” says Oh. “These microcarriers enable them to do that while suspended in a spinner flask, which is better for bulk production,” says Oh.

Researchers typically agitate stem cell cultures to help the cells receive nutrients and prevent them from clumping. Oh’s team conducted extensive research into the optimal levels of agitation required to increase the number of cells produced. They showed that too much agitation in the first few days of culture growth is detrimental3.

The team developed two effective protocols: one using stirring and another employing a rocking motion. “Both approaches have potential for industrial scale production,” says Oh.

They also created an automated video analysis technique to efficiently quantify the cardiomyocytes produced using their process4. The technique was used to visualize the newly grown heart cells as they regularly contract or beat — just as cardiomyocytes do in a living heart (see video).

“Before the video analysis system, we had to depend on experienced eyes to identify beating microcarrier–cell aggregates,” says Oh.

The next step for the group is to scale up production to more commercially useful levels. The process currently uses a 50 milliliter flask of microcarriers and stem cells, but, says Oh, “We need to take it to a one liter controlled bioreactor.”

Story Source:

The above story is based on materials provided by A*STAR Research.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Mini breasts grown in petri dishes for cancer research

June 12, 2015
blank

Soft-tissue engineering for hard-working cartilage

May 16, 2015

Breakthrough in 3-D printing of replacement body parts

April 29, 2015

New material for creating artificial blood vessels

April 28, 2015

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    694 shares
    Share 278 Tweet 174
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyEcology/EnvironmentMaterialsMedicine/HealthClimate ChangePublic HealthCell BiologyInfectious/Emerging DiseasescancerGeneticsTechnology/Engineering/Computer ScienceChemistry/Physics/Materials Sciences

Recent Posts

  • Helping people understand glaucoma with a mobile app
  • Virtual avatar coaching with community context for adult-child dyads
  • New Lancet series shows mixed progress on maternal and child undernutrition in last decade
  • “Magic sand” might help us understand the physics of granular matter
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In