• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, February 8, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A rough start can lead to a strong bond

Bioengineer by Bioengineer
December 21, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – The manufacturing industry is constantly on the lookout for more efficient manufacturing materials, but most new methods to develop such materials created in the lab are not suited for industrial-scale use. Now, investigators from The Institute of Industrial Science at The University of Tokyo have developed a cheap and simple method of bonding polymers to galvanized steel—steel with a coating of zinc layered over it—to create a lightweight and durable material that can feasibly be produced on an industrial scale.

A Rough Start Can Lead to a Strong Bond

Credit: Institute of Industrial Science, The University of Tokyo

Tokyo, Japan – The manufacturing industry is constantly on the lookout for more efficient manufacturing materials, but most new methods to develop such materials created in the lab are not suited for industrial-scale use. Now, investigators from The Institute of Industrial Science at The University of Tokyo have developed a cheap and simple method of bonding polymers to galvanized steel—steel with a coating of zinc layered over it—to create a lightweight and durable material that can feasibly be produced on an industrial scale.

As the manufacturing sector becomes increasingly incentivized to think about the environmental impact of their processes, new techniques are needed to ensure that parts can be made both sustainably (with a minimum of harsh chemicals and waste) and with a long lifetime before needing to be replaced. Galvanized steel is widely used in the automobile industry owing to its excellent mechanical properties and corrosion resistance. However, because of its weight, polymer-metal composites are being increasingly applied as alternative lightweight materials with high durability. Unfortunately, traditional techniques to bond polymers to galvanized steel are unsuited for mass production as they often require harsh chemicals or specialized equipment.

In a study published recently in the Journal of Manufacturing Processes, a team of researchers at The University of Tokyo demonstrated a method by which a polymer can be bonded to galvanized steel simply by pre-treating the steel with an acid wash and dipping it in hot water. The acid wash strips the outer “passive layer” on the zinc coating of the steel which allows the hot water to form rough nanoscale needle structures on the true surface. The researchers discovered that when a polymer was applied to the treated metal (in a process called injection-molded direct joining), it filled in the tiny gaps and ridges between and within the needle structures creating very strong mechanical linkages. “We found that immersion in hot water was a simple and effective method for producing nanoscale structures on the zinc coating for the polymer to adhere to, but that prior acid-washing to remove the passive layer was a necessary step for this to occur,” explains lead author Weiyan Chen.

The group also showed how the tensile-shear strength, which indicates how much force the polymer can withstand before being torn off the metal, increased with the complexity of the nanoscale structures on the galvanized steel surface. By optimizing the hot water temperature and treatment time to achieve peak complexity in the nanoscale structuring, the team was able to significantly increase the tensile-shear strength compared with untreated metal. “Our process can be adapted for a wide range of hybrid joining applications, in which metal and plastic parts need to be permanently bonded,” says senior author Yusuke Kajihara. “Furthermore, our method does not use harsh chemicals or complicated procedures and thus is suited to the scale-up required for industrial application”. This work could lead to optimization of polymer-metal joining which would be a significant asset to the manufacturing industry.

###

About Institute of Industrial Science, The University of Tokyo

The Institute of Industrial Science, The University of Tokyo (UTokyo-IIS) is one of the largest university-attached research institutes in Japan. UTokyo-IIS is comprised of over 120 research laboratories—each headed by a faculty member—and has over 1,200 members (approximately 400 staff and 800 students) actively engaged in education and research. Its activities cover almost all areas of engineering. Since its foundation in 1949, UTokyo-IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.



Journal

Journal of Manufacturing Processes

DOI

10.1016/j.jmapro.2022.11.044

Article Title

Effect of nanostructured zinc coating on high joining strength of polymer/galvanized high-strength steel composite via injection molding

Article Publication Date

1-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

A schematic of the beam diameter measurement using transmitted X-rays old and new methods

Size of X-Ray beams successfully evaluated with mathematics

February 8, 2023
Flight Bones

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

February 8, 2023

Immunaeon joins the RegenMed Hub

February 8, 2023

Novel method to design new peptide therapeutics pioneered

February 8, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    66 shares
    Share 26 Tweet 17
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9
  • Duke-NUS and NHCS scientists first in the world to regenerate diseased kidney

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Size of X-Ray beams successfully evaluated with mathematics

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

Immunaeon joins the RegenMed Hub

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In