• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A research team from Denmark discovers new control mechanism in the innate immune system

Bioengineer by Bioengineer
January 26, 2021
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Rasmus Kjeldsen Jensen, Aarhus University

Although the protein ITIH4 is found in large amounts in the blood, its function has so far been unknown. By combining many different techniques, researchers from Aarhus University have discovered that ITIH4 inhibits proteases in the innate immune system via an unknown mechanism. The research results have just been published in the prestigious scientific journal Science Advances.

Proteases are enzymes that cleave other proteins. Most often, proteases occur in cascade networks, where a particular event triggers a chain reaction in which several proteases cleave and thereby activate each other. Most well known is probably the coagulation cascade, which causes clotting of our blood when a vessel is punctured.

But a similar network of proteases called the complement system is found in our blood and tissues. Activation of the complement system leads to the elimination of disease-causing organisms, cancer cells, and our own dying cells. To prevent the complement system from attacking our healthy cells, it is kept under close control by proteins which inactivate the proteases after a short time; these control proteins are called protease inhibitors.

At the Department of Biomedicine at Aarhus University, Professor Steffen Thiel and PhD student Rasmus Pihl wanted to investigate which other proteins in our blood the so-called MASP proteases from the complement cascade interact with. With the help of the mass spectrometry group at the Department of Molecular Biology and Genetics at Aarhus University, led by Professor Jan J. Enghild, they found to their surprise that two MASP proteases formed a strong complex with the ITIH4 protein.

ITIH4 forms a complex with the MASP-1 and MASP-2 enzymes

“I was highly surprised when I saw the first data from our partners, showing that ITIH4 could form a complex with the MASP-1 and MASP-2 enzymes. At Biomedicine, we have been studying these two proteases for 25 years, and ITIH4 has simply never been on the radar. But it made good sense, as proteins similar to ITIH4 act as inhibitors of other proteases,” says Rasmus Pihl.

Rasmus and Steffen now began a systematic study of how ITIH4 affects MASP-1 and MASP-2. It turned out that when ITIH4 formed a complex with the MASP-1 and MASP-2 enzymes, these could still cleave small proteins, while large proteins could not be cleaved when ITIH4 inhibited MASP-1 and MASP-2.

Their colleagues Jan J. Enghild and Gregers R. Andersen at the Department of Molecular Biology and Genetics nearly fell out of their chair when they learned about their discovery.

Since the 1980s, researchers at the department have characterized another protease inhibitor called A2M exactly with this property. Had their colleagues at Biomedicine now discover that ITIH4 functions similar to A2M?

To characterize in detail how ITIH4 inhibits the MASP proteases, Rasmus Pihl isolated both free ITIH4 and ITIH4 bound to the MASP-1 protease. By the use of X-ray small-angle scattering and electron microscopy, these samples were studied by postdoc Rasmus Kjeldsen Jensen and Professor Gregers Rom Andersen at Molecular Biology and Genetics. They showed that ITIH4 makes contact with the MASP-1 protease via a so-called von Willebrand domain, which matched nicely with the results from the Department of Biomedicine. This is a completely new mechanism for inhibiting proteases, and entirely different from the way A2M inhibits proteases.

“There is very little knowledge about ITIH4, but it is known that under various pathological conditions, the protein can be cleaved. Our results show that such a cleavage is absolutely necessary for the way ITIH4 can function as an enzyme inhibitor,” explains Professor Steffen Thiel.”

Gregers Rom Andersen explains: “By using cryo-electron microscopy, we now try to understand in detail how ITIH4 inhibits MASP-1 and MASP-2 via this new inhibition mechanism. We already know that when ITIH4 is cleaved, it forms a complex with both MASP-1 and another ITIH4 molecule. We are very excited to see how it takes place.”

At one point, Winston Churchill expressed: “Men occasionally stumble over the truth, but most of them pick themselves up and hurry off as if nothing ever happened. “As a researcher, it is absolutely necessary to maintain curiosity. It is deeply fascinating to work with proteins and mechanisms that are completely new and undescribed. This also means that we do not know where we end up in terms of describing whether ITIH4 has a significance in connection with clinical situations,” says Steffen Thiel.

The new results have led to a grant from the Novo Nordisk Foundation to continue the collaboration between the two departments.

###

Link to the research article in the scientific journal Science Advances

ITIH4 acts as a protease inhibitor by a novel inhibitory mechanism

Rasmus Pihl, Rasmus K. Jensen, C. Poulsen, Lisbeth Jensen, Annette G. Hansen, Ida B. Thøgersen, József Dobó, Péter Gál, Gregers R. Andersen, Jan J. Enghild and Steffen Thiel

DOI: 10.1126/sciadv.aba7381

For further information, please contact

Professor Steffen Thiel

Department of Biomedicine, Aarhus University, Denmark

[email protected] – +45 2927 0890

Professor Gregers Rom Andersen

Department of Molecular Biology and Genetics, Aarhus University, Denmark

[email protected] – +45 30256646

Media Contact
Professor Gregers Rom Andersen
[email protected]

Original Source

https://mbg.au.dk/en/news-and-events/news-item/artikel/an-interdisciplinary-research-team-from-denmark-discovers-new-control-mechanism-in-the-innate-immune/

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aba7381

Tags: BiochemistryBiodiversityBiologyBiotechnologyCell BiologyGeneticsMicrobiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Creating AI Companions for Caregiver Role Transitions

Antenatal Origins and Treatments of Neurodevelopment in CHD

Fast Solid-Phase Creation of Crystalline COF Platelets

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.