• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A rapid, easy-to-use DNA amplification method at 37°C

Bioengineer by Bioengineer
June 14, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study could advance molecular diagnosis and robotics

IMAGE

Credit: Organic and Biomolecular Chemistry

Scientists in Japan have developed a way of amplifying DNA on a scale suitable for use in the emerging fields of DNA-based computing and molecular robotics. By enabling highly sensitive nucleic acid detection, their method could improve disease diagnostics and accelerate the development of biosensors, for example, for food and environmental applications.

Researchers from Tokyo Institute of Technology (Tokyo Tech), Abbott Japan Co., Ltd, and the University of Electro-Communications, Japan, report a way to achieve million-fold DNA amplification and targeted hybridization[1] that works at body temperature (37°C/98.6°F).

The method, named L-TEAM (Low-TEmperature AMplification), is the result of more than five years of research and offers several advantages over traditional PCR[2], the dominant technique used to amplify DNA segments of interest.

With its easy-to-use, ‘one-pot’ design, L-TEAM avoids the need for heating and cooling steps and specialized equipment usually associated with PCR. That means it is an efficient, inexpensive method that can importantly prevent protein denaturation[3], thereby opening a new route to real-time analysis of living cells.

In their study published in Organic & Biomolecular Chemistry, the researchers introduced synthetic molecules called locked nucleic acids (LNAs) into the DNA strands, as these molecules are known to help achieve greater stability during hybridization.

The addition of LNA led to an unexpected, but beneficial, outcome. The team observed a reduced level of “leak” amplification, a type of non-specific amplification that has long been an issue in DNA amplification studies as it can lead to an error in disease diagnosis, that is, a false positive.

“We were surprised to discover the novel effect of LNA in overcoming the common leak problem in DNA amplification reactions,” says Ken Komiya, assistant professor at Tokyo Tech’s School of Computing. “We plan to investigate the mechanisms behind leak amplification in detail and further improve the sensitivity and speed of L-TEAM.”

In the near future, the method could be used to detect short nucleic acids such as microRNA for medical diagnostics. In particular, it could facilitate point-of-care testing and early disease detection. MicroRNAs are now increasingly recognized as promising biomarkers for cancer detection and may hold the key to uncovering many other aspects of human health and environmental science.

In addition, Komiya explains that L-TEAM paves the way to practical use of DNA computing and DNA-controlled molecular robotics. “The original motivation behind this work was the construction of a novel amplified module that is essential to build advanced molecular systems,” he says. “Such systems could provide insights into the operational principle behind living things.”

###

Media Contact
Emiko Kawaguchi
[email protected]

Original Source

https://www.titech.ac.jp/english/news/2019/044390.html

Related Journal Article

http://dx.doi.org/10.1039/c9ob00521h

Tags: BiochemistryBiologycancerGenesMedicine/HealthNanotechnology/MicromachinesPharmaceutical Sciences
Share15Tweet7Share2ShareShareShare1

Related Posts

blank

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025
blank

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polyions and Polyelectrolyte Complexes: Advancements for Brain Therapies

SLC4A11: Key Marker for Ovarian Cancer Treatment Response

Preparing Biomedical Engineers for an Evolving Future

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.