• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A novel drug target for neonatal and infant heart failure

Bioengineer by Bioengineer
November 19, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mitsuhiko Yamada MD, PhD., Department of Molecular Pharmacology, Shinshu University School of Medicine, Japan

Researchers have identified a new druggable target for heart failure in neonates and infants, a condition for which there has been no specific treatment. Approximately 60 percent of children born with congenital heart abnormalities will develop overt heart failure within the first year of life. The progression of heart failure in these infants is often rapid, with a high frequency of fatalities. Stimulation of this target significantly increased the cardiac contractility of newborns and infants in mice with few side effects such as tachycardia, arrhythmias, and increased myocardial oxygen consumption, which are common problems with many cardiotonic drugs.

Unlike chronic heart failure in adults, evidence is lacking for the appropriate treatment of pediatric heart failure. The main reason for this is the great variety of pathogeneses and pathophysiologies of heart failure in children, making large-scale clinical trials difficult. Therefore, pediatric heart failure patients are currently being treated with adult medications without compelling evidence of their safety and effectiveness in children. The research group led by Professor Mitsuhiko Yamada of Shinshu University hopes to develop the world’s first small molecule therapeutics for pediatric heat failure that can be easily used also by outpatients through collaborations with pharmaceutical companies.

The research group began this study in a bottom-up but not an outcome-oriented manner, which would be the most standard and effective way of translational science. Professor Yamada was interested in the molecular mechanism underlying the regulation of cardiac L-type Ca2+ channels (LTCC) by intracellular signaling pathways. In 2010, Professor Yamada came across a paper written by Prof. William A. Catterall’s group describing that casein kinase can phosphorylate the main subunit of cardiac LTCC (Fuller, M.D. et al. (2010) Sci Signal: ra70). They started efforts to seek for the physiological significance of this phenomenon and fortunately found that it mediates the positive inotropic effect of angiotensin II only found in the neonatal period (Kashihara T. et al. (2017) J. Physiol. (Lond.) 595: 4207-4225). With this information, the research group changed their style and decided to serve a long-lasting unmet medical need, therapeutics specific for pediatric heart failure, by utilizing this pathway.

Children, especially those before weaning are not “miniture adults”. They are in a so-called ‘critical period’ of life and thus, vulnerable but at the same time, formidably robust. Therefore, it may be sometimes more appropriate to develop drugs for children not only by extrapolating scientific and medical knowledge regarding adults to infants and children but by scrutinizing druggable targets underlying their robustness. Professor Yamada states that it was difficult “To gain lines of evidence against todays’ scientific and medical dogma that angiotensin II and its type 1 receptors are a common cause of almost all cardiovascular and renal diseases.”

The renin-angiotensin-aldosterone system was discovered more than a hundred years ago. Its importance in the mammalian perinatal period had been established by the end of the 20th century but had been almost completely forgotten mainly because of the great success of inhibitors of this system in adult medicine. The research group at Shinshu University School of Medicine and Institute of Biomedical Sciences fortunately succeed in digging up this valuable “fossil” in basic research work.

Professor Yamada sends a message on behalf of the group regarding their findings to “clinical practitioners to let us develop and dispatch novel therapeutics specific for pediatric heart failure together to all children worldwide. There is a Japanese word “onko-chishin” that means to study the past to learn new things. Nowadays, science is progressing at an astonishing speed. But it may be advisable that we sometimes stop and look back on the past. If you found something very old but shining in the darkness, it might be the very essence of nature.”

###

Media Contact
Hitomi Thompson
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jacbts.2020.08.011

Tags: CardiologyMedicine/HealthPediatricsPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Researchers Discover Novel Energy Potential in Iron-Based Materials

October 31, 2025

UCSB Experimentalists Awarded Gordon and Betty Moore Foundation Grants to Propel New Insights and Innovations

October 30, 2025

Truly strange and thrilling: Quantum oscillations ripple through this science magazine headline

October 30, 2025

Mapping Proteome-wide Selectivity of Diverse Electrophiles

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers Discover Novel Energy Potential in Iron-Based Materials

Impact of Childhood Trauma on Autistic Youth Health

UCSB Experimentalists Awarded Gordon and Betty Moore Foundation Grants to Propel New Insights and Innovations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.