• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new way to use CRISPR

Bioengineer by Bioengineer
December 18, 2018
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UD engineers develop methods to use CRISPR technology for conditional gene regulation

IMAGE

Credit: Photo by Kathy F. Atkinson


A team of engineers at the University of Delaware has developed a method to use CRISPR/Cas9 technology to set off a cascade of activities in cells, a phenomenon known as conditional gene regulation. Their method, described in the journal Nature Chemical Biology, introduces a new functionality to CRISPR, one of today’s most-talked-about technologies.

Gene editing with CRISPR technology has been called “one of the biggest science stories of the decade” for its applications to medicine, agriculture and much more. CRISPR allows scientists to precisely target and edit DNA within living cells, which could help them correct anomalies that cause inherited diseases. The first clinical trials in humans are underway in China.

However, until now, scientists hadn’t figured out how to program their CRISPR systems to target DNA while integrating information from within the cells they were studying.

At UD, Wilfred Chen, the Gore Professor of Chemical Engineering, and graduate student Ka-Hei Siu designed structures — dubbed toehold-gated gRNA (thgRNA)– for targeted gene regulation in E. coli bacteria.

Traditionally, in CRISPR/Cas9 genome editing, scientists use a single-stranded piece of ribonucleic acid (RNA) to guide the Cas9 enzyme to the deoxyribonucleic acid (DNA) they want to target. Instead, Chen and Siu installed a hairpin-like structure that blocks part of the RNA from recognizing the DNA. Only a small part, called the toehold, is exposed and capable of binding to other RNA. Then Chen, and Siu used RNA from within the cell as a trigger to open up their blocking mechanism, activating the Cas9 protein so that it could then bind and regulate the DNA.

“The key thing is that we wanted to use some native cellular information,” said Chen. “We wanted to be able to use this native cellular response as a way to modulate the CRISPR/Cas9 protein functions and basically develop a controlled mechanism so that we could modulate cellular functions accordingly.”

This technology offers a versatile, “plug and play” design that could be used to induce gene editing and regulation in a variety of systems, says Chen.

“Moving forward, the idea is to be able to use, ideally on paper, any kind of cellular messenger RNA as an activation or deactivation device,” he said. “You can imagine that we can activate something based on whether the cells are growing on glucose or starving for phosphate or exposed to high-temperature conditions or low-pH conditions.”

###

This work was supported by grants from NSF (MCB1615731 and MCB1817675).

Media Contact
Peter Kerwin
[email protected]
302-831-8749

Original Source

https://www.udel.edu/udaily/2018/december/wilfred-chen-crispr-gene-editing-conditional-regulation/

Tags: BiologyBiomedical/Environmental/Chemical EngineeringGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Retrotransposons and Life History Shape Anuran Genome Size

December 23, 2025
Unraveling Coding vs. Non-Coding Genes in Obesity

Unraveling Coding vs. Non-Coding Genes in Obesity

December 22, 2025

Unraveling Sweet Orange’s Response to Boron Deficiency

December 22, 2025

Wnt Gene Family Discovered in Forest Musk Deer

December 22, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Micro-CT and AI Evaluate Ovarian Follicles

Analyzing US Clinical Guidelines: Evidence and Recommendations

Validating Chinese Psychological Safety in Simulation Scale

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.