• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, June 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new way to assess male fertility

Bioengineer by Bioengineer
February 19, 2020
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Adapted from Analytical Chemistry 2019, DOI: 10.1021/acs.analchem.9b05183


Current tests for male fertility include measuring the concentration and motility of spermatozoa. However, other characteristics of sperm, such as their ability to follow a chemical trail to the egg, can influence the likelihood of fertilization. Now, researchers reporting in Analytical Chemistry have devised a quick and convenient microfluidic chip to assess this chemotactic response of spermatozoa, which could help provide a more complete picture of a man’s fertility.

Sperm use chemotaxis, or movement toward increasing or decreasing concentrations of a substance, to guide their journey through the fallopian tube to the egg. Progesterone is present at high concentrations in the fluid that surrounds the egg, and previous studies have indicated that the hormone can attract and activate spermatozoa of some mammalian species. Scientists have used microfluidic devices — plastic or hydrogel chips with tiny channels through which liquids flow in a highly controlled manner –to study sperm chemotaxis. But the devices have had various limitations, such as the need for pumps to drive the flow of fluid, which could affect sperm motility. Loes Segerink, Johanna Berendsen and colleagues wanted to develop an improved, pump-free microfluidic device that could quickly identify small differences in the chemotactic behavior of sperm.

The researchers designed a microfluidic chip about the size of a postage stamp. The chip, which they made with an agarose/gelatin material, contained various channels and side chambers. The researchers created a concentration gradient of progesterone in the device from left to right, and saw that more boar spermatozoa added to the device swam to the right side chambers (high progesterone) than the left (low progesterone), which shows chemotactic movement. In addition to fertility testing, the device could be used to investigate other substances that could also contribute to sperm’s guidance mechanism, the researchers say.

###

The authors acknowledge funding from the University of Twente and the Dutch Technology Foundation STW.

The study is freely available as an ACS AuthorChoice article here.

For more research news, journalists and public information officers are encouraged to apply for complimentary press registration for the ACS Spring 2020 National Meeting & Exposition in Philadelphia.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455

Tags: Chemistry/Physics/Materials SciencesDevelopmental/Reproductive BiologyFertility
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Cardiorespiratory Shifts Following Transcatheter PDA Closure

June 17, 2025
Neocarzilin A Triggers ER Stress to Induce Apoptosis

Neocarzilin A Triggers ER Stress to Induce Apoptosis

June 16, 2025

Global Warming Could Boost Obstructive Sleep Apnea

June 16, 2025

Nerve Fiber Changes in Parkinson’s and Atypical Parkinsonism

June 15, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    70 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seamlessly Connect Nanoparticles Like Building Blocks for Industrial Applications!

From Farm to Fashion: How Agricultural Waste is Transforming into Tomorrow’s Textiles

Boosting D-Lactic Acid Production Through UV Irradiation Advances

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.