• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new state of light

Bioengineer by Bioengineer
April 1, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists at the University of Bonn observe new phase in Bose-Einstein condensate of light particles

IMAGE

Credit: © Gregor Hübl/Uni Bonn

A single “super photon” made up of many thousands of individual light particles: About ten years ago, researchers at the University of Bonn produced such an extreme aggregate state for the first time and presented a completely new light source. The state is called optical Bose-Einstein condensate and has captivated many physicists ever since, because this exotic world of light particles is home to its very own physical phenomena. Researchers led by Prof. Dr. Martin Weitz, who discovered the super photon, and theoretical physicist Prof. Dr. Johann Kroha have returned from their latest “expedition” into the quantum world with a very special observation. They report of a new, previously unknown phase transition in the optical Bose-Einstein condensate. This is a so-called overdamped phase. The results may in the long term be relevant for encrypted quantum communication. The study has been published in the journal Science.

The Bose-Einstein condensate is an extreme physical state that usually only occurs at very low temperatures. What’s special: The particles in this system are no longer distinguishable and are predominantly in the same quantum mechanical state, in other words they behave like a single giant “superparticle”. The state can therefore be described by a single wave function.

In 2010, researchers led by Martin Weitz succeeded for the first time in creating a Bose-Einstein condensate from light particles (photons). Their special system is still in use today: Physicists trap light particles in a resonator made of two curved mirrors spaced just over a micrometer apart that reflect a rapidly reciprocating beam of light. The space is filled with a liquid dye solution, which serves to cool down the photons. This is done by the dye molecules “swallowing” the photons and then spitting them out again, which brings the light particles to the temperature of the dye solution – equivalent to room temperature. Background: The system makes it possible to cool light particles in the first place, because their natural characteristic is to dissolve when cooled.

Clear separation of two phases

Phase transition is what physicists call the transition between water and ice during freezing. But how does the particular phase transition occur within the system of trapped light particles? The scientists explain it this way: The somewhat translucent mirrors cause photons to be lost and replaced, creating a non-equilibrium that results in the system not assuming a definite temperature and being set into oscillation. This creates a transition between this oscillating phase and a damped phase. Damped means that the amplitude of the vibration decreases.

“The overdamped phase we observed corresponds to a new state of the light field, so to speak,” says lead author Fahri Emre Öztürk, a doctoral student at the Institute for Applied Physics at the University of Bonn. The special characteristic is that the effect of the laser is usually not separated from that of Bose-Einstein condensate by a phase transition, and there is no sharply defined boundary between the two states. This means that physicists can continually move back and forth between effects.

“However, in our experiment, the overdamped state of the optical Bose-Einstein condensate is separated by a phase transition from both the oscillating state and a standard laser,” says study leader Prof. Dr. Martin Weitz. “This shows that there is a Bose-Einstein condensate, which is really a different state than the standard laser. “In other words, we are dealing with two separate phases of the optical Bose-Einstein condensate,” he emphasizes.

The researchers plan to use their findings as a basis for further studies to search for new states of the light field in multiple coupled light condensates, which can also occur in the system. “If suitable quantum mechanically entangled states occur in coupled light condensates, this may be interesting for transmitting quantum-encrypted messages between multiple participants,” says Fahri Emre Öztürk.

###

Funding:

The study received funding from the Collaborative Research Center TR 185 “OSCAR – Control of Atomic and Photonic Quantum Matter by Tailored Coupling to Reservoirs” of the Universities of Kaiserslautern and Bonn and the Cluster of Excellence ML4Q of the Universities of Cologne, Aachen, Bonn and the Research Center Jülich, funded by the German Research Foundation. The Cluster of Excellence is embedded in the Transdisciplinary Research Area (TRA) “Building Blocks of Matter and Fundamental Interactions” of the University of Bonn. In addition, the study was funded by the European Union within the project “PhoQuS – Photons for Quantum Simulation” and the German Aerospace Center with funding from the Federal Ministry for Economic Affairs and Energy.

Publication: Fahri Emre Öztürk, Tim Lappe, Göran Hellmann, Julian Schmitt, Jan Klaers, Frank Vewinger, Johann Kroha & Martin Weitz: Observation of a Non-Hermitian Phase Transition in an Optical Quantum Gas. Science, DOI: 10.1126/science.abe9869

Video: https://youtu.be/PHSNJIu2IVo

Media contact:

Prof. Dr. Martin Weitz

Institut für Angewandte Physik

Universität Bonn

Tel.: +49-(0)228-73-4837

E-mail: [email protected]

Dr. Julian Schmitt

Institut für Angewandte Physik

Universität Bonn

Tel.: +49-(0)228-73-60122

E-mail: [email protected]

Prof. Dr. Johann Kroha

Physikalisches Insitut

Universität Bonn

Tel.: +49-(0)228-73-2798

E-mail: [email protected]

Media Contact
Prof. Dr. Martin Weitz
[email protected]

Original Source

https://www.uni-bonn.de/news/074-2021

Related Journal Article

http://dx.doi.org/10.1126/science.abe9869

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

The fate of the planet

April 16, 2021
IMAGE

The future of particle accelerators is here

April 16, 2021

Scientists may detect signs of extraterrestrial life in the next 5 to 10 years

April 16, 2021

On the pulse of pulsars and polar light

April 16, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVaccineWeather/StormsVirusVirologyWeaponryVaccinesUrbanizationVehiclesUrogenital SystemZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • New amphibious centipede species discovered in Okinawa and Taiwan
  • USU researchers develop power converter for long-distance, underwater electric grids
  • The fate of the planet
  • The future of particle accelerators is here
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In