• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new sensitive tool for the efficient quantification of plant disease susceptibility

Bioengineer by Bioengineer
July 14, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: APS

While several biology techniques have undergone significant technical advances that have allowed their high-throughput implementation, assessing the resistance levels of plant varieties to microbial pathogens remains an arduous and time-consuming task. In response to this, Pujara and collaborators took advantage of the naturally occurring luminescence of a deep-sea shrimp to engineer a light-producing bacterial reporter that allows the quantification of plant resistance levels through imaging.

The Nanoluc luciferase (NL) from Oplophorus gracilirostris is a small protein characterized by its high stability and strong brightness. The researchers exploited these features to produce a light emitting bacterial strain from the Pseudomonas syringae species, a plant pathogen. Because plant pathogens reproduce at a higher pace in susceptible than resistant hosts, susceptible plants were expected to produce more light when infected with a controlled amount of the luminescent pathogen. By integrating this setup with an automated table with a camera that moves within and images plants, the researchers were able to simultaneously phenotype over 30 Arabidopsis thaliana mutants. This novel quantification method was compared with conventional culture-based techniques, showing a high correlation between the outcomes of both approaches, indicating the robustness of the newly developed tool and the potential of this technology for other uses and applications.

“Our high throughput imaging-based resistance assay will provide plant pathologists and breeders a long-sought tool to screen an unprecedented number of plants to identify resistance traits that could fight a potential future pandemic,” explained Hong-Gu Kang, the researcher leading this project. “In addition, we are currently working on developing an artificial intelligence (AI) algorithm that will further expedite resistance analysis processes. Ultimately, we would like to conduct a project to assess all the genes in Arabidopsis and other species for resistance,” he added.

Read more about this technical advance in the fully open access MPMI journal. This article has been through peer-review but has not yet been edited and formatted.

###

Media Contact
Juan S. Ramirez-Prado
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/MPMI-12-20-0351-TA

Tags: Agricultural Production/EconomicsAgricultureBacteriologyBiologyBiotechnologyCell BiologyFood/Food ScienceMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Visual Experience’s Impact on Haptic Spatial Perception

October 20, 2025
blank

Unveiling Sex-Switching in Silver Pomfret Juveniles

October 20, 2025

Continuous Electrocardiogram-Based Sex Index Unveiled

October 19, 2025

Early Gonadectomy Impacts Lifelong Frailty in Dogs

October 19, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    298 shares
    Share 119 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Sepsis Management Knowledge Among ICU Nurses

Advances in Endometrial Cancer Biomarkers via Multi-Omics

Advancing Tuberculosis Treatment: Immunotherapy Innovations Ahead

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.