• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new model of Alzheimer’s progression

Bioengineer by Bioengineer
June 14, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The Biodesign Institute at Arizona State University

Alzheimer’s disease is the most common form of dementia and is characterized by neurodegeneration in regions of the brain involved in memory and learning. Amyloid beta and tau are two toxic proteins that build up in disease and cause eventual neuronal death, but little is known about how other cells in the brain react during disease progression.

A new study from the ASU-Banner Neurodegenerative Research Center (NDRC) and MIT/Koch Institute sheds new light on how disease processes manifest in patients with Alzheimer’s disease.

Diego Mastroeni of the NDRC teamed up Forest White and Douglas Lauffenburger, colleagues in MIT’s Department of Biological Engineering, to explore how protein and signaling pathways change in patients with Alzheimer’s disease. Their analysis captures a detailed molecular profile of changes in protein levels and alterations known as protein phosphorylation across a cohort of patients with well-preserved brain tissue, from the Banner Sun Health Research Institute. Their work creates a new model of disease progression, taking advantage of the heterogeneity that is inherent to human studies.

“This manuscript highlights the importance of integrating the phosphoproteome with the proteome and transcriptome datasets to get a better picture of the drivers of disease, from transcription to translation,” said Mastroeni. (The phosphoproteome refers to proteins that have undergone epigenetic modification through the addition of a phosphate group. The proteome incudes the full complement of all proteins in the body, while the transcriptome refers to the RNA messages produced by genes, which are subsequently translated into proteins.)

The researchers’ analysis highlights the links between toxic protein build-up, neurodegeneration, and the glial cells which support and protect neurons in the brain. In particular, they found an intriguing association between markers of neurodegeneration and two types of glial cell: oligodendrocytes and microglia. Progressive alterations in these cells may be key to understanding the causes of neurodegeneration.

The new study appears in the journal Nature Aging.

“Our results show that there are a plethora of cellular signaling pathways that are activated at all stages of disease. We may be able to repurpose available therapies to target protein kinases that regulate these cell signaling events,” White says. “Clinicians today are studying therapeutic effects on amyloid and tau as proxies for disease, but our results suggest that glia cells are involved at every step of the process. Improved understanding of glia cells and their roles in progressive neurodegeneration may provide new opportunities for treatment of this disease.”

“This collaborative effort is the kind of work that we at the NDRC value,” Mastroeni says. “No one individual can tackle this disease on their own; it’s going to take a group effort to combat this devastating illness.”

###

Media Contact
richard harth
[email protected]

Original Source

https://biodesign.asu.edu/news/new-model-alzheimers-progression

Related Journal Article

http://dx.doi.org/10.1038/s43587-021-00071-1

Tags: AgingAlzheimerBiochemistryBiologyCell BiologyDiagnosticsGeneticsGerontologyMolecular Biologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

In-Mouth Hydrogel Delivers Artificial Saliva for Effective Dry Mouth Relief

August 13, 2025
blank

Unlock the Power of Cannabis Leaves: A Hidden Treasure of Rare Compounds

August 13, 2025

Breakthrough in Wafer-Scale Nano-Fabrication Enables Multi-Layer Diffractive Optical Processors for Unidirectional Visible Imaging

August 13, 2025

Polymer Connectivity Controls Solid-State Electrophotocatalysis

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seashells Propel Innovative Approaches to Plastic Recycling

Combining Dual Immune Checkpoint Inhibition with Radiotherapy Fails to Enhance Progression-Free Survival in Newly Diagnosed MGMT-Unmethylated Glioblastoma Patients

In-Mouth Hydrogel Delivers Artificial Saliva for Effective Dry Mouth Relief

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.