• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new method used to generate ensemble initial perturbations

Bioengineer by Bioengineer
February 11, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Advances in Atmospheric Sciences

The atmosphere is a chaotic system, and even negligible initial errors will give rise to gradual deviation of the forecast state from the true path, eventually resulting in chaos. This means that the weather has a predictability limit beyond which forecasts will lose all skill. Based on this, any single forecast is simply an estimate of the future state of the atmosphere within a stochastic framework, but provides no information regarding its reliability. Ensemble prediction offers one approach to generate probabilistic forecasts of the future state of the system based on a statistical sampling approach.

In the past two decades, ensemble forecasting has been developed substantially to become a powerful approach that improves numerical weather prediction. The basic principle of the generation of initial ensemble members is to sample the uncertainties related to the initial analysis. Various ensemble generation schemes based on dynamical error growth theory have been tested and used in weather prediction centers; for example, the bred vector (BV) method used at NCEP, and the singular vector (SV) method at ECMWF. Recently, data assimilation (DA) schemes were further combined with the dynamical methods to better sample the analysis uncertainties, such as in the ensemble transform Kalman filter (ETKF) scheme.

In a paper featured on the front cover of Advances in Atmospheric Sciences, Dr. Ruiqiang Ding of CAS Institute of Atmospheric Physics and his co-authors extend the definition of the NLLE from one- to n-dimensional spectra, and demonstrate the superiority of the NLLE spectrum in estimating the predictability of chaotic systems, as compared to the traditional Lyapunov exponent spectrum. In addition to estimating the predictability of chaotic systems, another important application of the NLLE method is to provide initial perturbations for ensemble forecasting. The results indicate that the NLLE scheme has similar ensemble forecasting skill to the ETKF scheme, both of which demonstrate better ensemble forecast skill compared with the BV and SV schemes. Despite the similar forecasting skills of the NLLV and ETKF schemes, the generation of the NLLVs is significantly more time-saving and easier to implement, as compared to the ETKF scheme.

"We expect the NLLE scheme to be effective in generating ensemble perturbations in a high-dimensional numerical model," says Ding. "In future work, we intend to further investigate the performance of the NLLE through comparison with various methods in more complex models, and our ultimate goal is to apply the NLLE method in operational weather forecasts".

###

Media Contact

Zheng Lin
[email protected]
86-108-299-5053
@aasjournal

http://english.iap.cas.cn/

Original Source

https://link.springer.com/article/10.1007/s00376-017-7011-8 http://dx.doi.org/10.1007/s00376-017-7011-8

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Key Genes for Fish Adaptation: Spotlight on Mechanisms

October 2, 2025
Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

Scientists Say Enhanced Fertility Diagnostics Could Advance Bird Conservation Breeding Programs

October 2, 2025

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    71 shares
    Share 28 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Human Milk: Cell Composition, Organoids, and Applications

Cardiac KCNQ1-KCNE1 Gating Driven by Structure, PIP2

Ultra-High Modulation Terahertz Graphene Metamaterials

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.