• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new mechanism improves the efficiency of antibacterial surfaces

Bioengineer by Bioengineer
June 9, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Universitat Rovira i Virgili researchers have developed a nanometric-scale theoretical model to create structures that kill bacteria by using elastic forces. The results of this study pave the way to creating new antibacterial materials

IMAGE

Credit: URV

Resistance to antibiotics has become a serious public health problem. Hospital infections, prostheses or surgical implants that become infected and do not respond to treatment are a real challenge to the research community, which has been seeking alternatives for effectively eliminating these bacteria for years. In 2012 the researchers from the Department of Chemical Engineering of the Universitat Rovira i Virgili, Vladimir Baulin and Sergey Pogodin, opened a line of research to develop antibacterial models that were inspired by insects. The wings of, for example, dragon flies are made up of complex structures of nanometric geometric shapes, which are highly efficient at killing bacteria. In their attempt to understand these forms and reproduce them as new anti-bacterial materials, a team consisting of Vladimir Baulin, Marc Werner, from the Leibniz-Institut für Polymerforschung (Dresden, Germany) and Elena Ivanova from the Australian university RMIT, discovered that the elasticity of nanopillars is a key factor because they can retain and release sufficient energy to kill the bacteria.

The line of research that had been initiated years before had already found that the wings of these insects are made up of a structure of nanopillars that eliminates bacteria mechanically, which is known as the biocide effect. These mechano-bactericidal properties, by which bacteria are killed almost instantly when they come into contact with the pillars without any need to use a chemical substance, raises numerous questions that researchers are attempting to answer by experimenting with different shapes and geometries that will help them to understand which has the most efficient bactericidal effect.

They investigated the bactericidal capacity on nanometric surfaces by varying the height of the pillars and keeping the other dimensions constant. The results, which have just been published in the journal PNAS, have shown that the flexibility of these pillars is closely connected to their appearance. “Even the solid and rigid materials become flexible if one of the dimensions is much longer than the others (for example, a guitar string or a long pillar),” says Vladimir Baulin. The researchers have developed a physical model that shows that when bacteria come into contact with these pillars they can accumulate elastic energy even at such a small scale. Thanks to this model it is now possible to calculate the elastic response of other structures and optimise their antibacterial properties.

The deformation forces of the pillar caused by the contact of the bacteria are so high that they can even break the bacteria’s cell wall, thus providing a new mechanism for killing them. These forces are associated with surface tensions imposed on the bacterial cells. The pillars under the bacteria that approach stretch more at the edges, whereas the pillars located under the centre of the bacteria practically do not change. The study shows, then, that the gradual variation in the height of the pillars of a nanometric surface can determine their bactericidal efficacy.

This discovery may lead to a completely new class of antibacterial materials, which could range from packaging for food to filters or masks. Unlike traditional filters, where the bacteria remain but are not deactivated, the new nanoscale elastic material can safely kill the bacteria in a matter of minutes, which means that they cannot activate any defence mechanisms or give any resistance at all,” concluded Baulin.

###

Media Contact
Vladimir Baulin
[email protected]

Original Source

https://diaridigital.urv.cat/en/a-new-mechanism-improves-the-efficiency-of-antibacterial-surfaces/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1916680117

Tags: BacteriologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemical/Biological WeaponsComputer ScienceResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Probabilistic UAV Activation in Stochastic Geometry Networks

October 28, 2025
blank

Advancing Lithium-Ion Battery Health Estimation with AI

October 28, 2025

Perillaldehyde Reduces Insulin Resistance in Trophoblasts

October 28, 2025

CREB5 Drives Cervical Cancer Nodal Metastasis via APLN

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probabilistic UAV Activation in Stochastic Geometry Networks

Advancing Lithium-Ion Battery Health Estimation with AI

Perillaldehyde Reduces Insulin Resistance in Trophoblasts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.