• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new material for regenerative medicine capable to control cell immune response

Bioengineer by Bioengineer
November 1, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists of Tomsk Polytechnic University jointly with the University of Montana (USA) proposed a new promising material for regenerative medicine for recovery of damaged tissues and blood vessels.

IMAGE

Credit: Tomsk Polytechnic University


In this case, such an irritant is a regenerative material. According to scientists, the proposed solution is a simpler way to control the immune response compared to existing ones. The results were published in ACS Biomaterials Science & Engineering (IF: 4,511; Q1).

“Nowadays, researchers have only a few tools to regulate the immune response. You can work with proteins, but it is difficult. You can use compounds, capable of killing immune cells, but they are harmful to other cells.

We followed a different path and suggest using inhibitors placed directly in the material itself to recover damage.”
– Ksenia Stankevich, author of the article and engineer of the Laboratory for Plasma Hybrid Systems, says.

Scaffolds are 3D frames of thin polymer fibers interwoven with each other in different directions. In regenerative medicine, they are used in case of injuries of bone and soft tissues. They are placed in the damaged area and new tissue regenerates through the scaffold and fills the injured area.

TPU and the University of Montana used a biodegradable polycaprolactone polymer for their scaffolds. It makes products more flexible and affordable in comparison with alternatives. The scaffolds made of polycaprolactone were created by the method of electrospinning, producing thinnest fibers from a polymer solution under the electric field. At the stage of obtaining the scaffolds, we introduce inhibitors into the polymer structure. These are two compounds – IQ-1 (full name – 11H-indeno [1,2-b] quinoxaline-11-on oxime) and IQ-1E (full name – 11H-indeno [1,2-b] quinoxaline-11- on O-(O-ethylcarboxymethyl) oxime).

“Inhibitors suppress or slow down physiological and physicochemical processes. They affect enzymes. To do this, the enzyme and the inhibitor must fit together like a lock and a key. One of the groups of enzymes responsible for the inflammatory process is the JNK group” – Ksenia Stankevich explains. “Earlier we obtained new promising inhibitors, demonstrating high biological activity in inhibiting the functioning of these enzymes, such as IQ-1 and IQ-1E. Our scaffolds differ in the use of specific inhibitors and also in the fact that we can release them from the material gradually, having a prolonged effect. This is mainly due to the gradual natural degradation of the polymer. Additionally, it degrades to biocompatible 6-hydroxycaproic acid, which is recycled by human body.

Immune response of a cell is a cascade of biochemical processes. In this case, the JNK enzymes are links in the chain. Inhibitors bind to enzymes and block their work. Thus, suppressing one link, we turn off the entire subsequent reaction chain.

“In this article, we present the research results on immune cells, isolated from human blood and cell lines. In the future, we will look for opportunities for in vivo research.

Eventually, our scaffolds could be used to recover damages of soft tissues and blood vessels. The polycaprolactone has all suitable mechanical properties. For instance, it can reduce the negative consequences after a heart attack and stroke, the researcher says.

Scaffolds from various materials are already being implemented into medical practice in developed countries, but it is too early to talk about their widespread application. However, it is only a matter of time, that is why scientists continue searching for the most effective materials and biologically active compounds. ”

###

The present work is a result of the collaboration of several TPU research teams headed by Associate Prof. Sergey Tverdokhlebov, the Weinberg Research Center, Prof. Andrey Khlebnikov and Prof. Victor Filimonov, the Kizhner Research Center, and Prof. Mark Quinn, and Igor A. Schepetkin, Senior Research Associate at the Department of Microbiology and Immunology, the University of Montana.

The studies were conducted as the part of Ksenia Stankevich internship under the Fulbright Program and financially supported by the Russian Science Foundation project (No. 17-15-01111) and is a development of the RSF project No. 16-13-10239 – Development and Modeling of Hybrid Biodegradable Scaffolds with Predicted Physicochemical and Immunomodulating Properties for Tissue-Engineering Constructions

Media Contact
Vitalii Sdelnikov
[email protected]
7-382-260-6404

Original Source

https://news.tpu.ru/en/news/2019/11/01/35468/

Related Journal Article

http://dx.doi.org/10.1021/acsbiomaterials.9b01401

Tags: BiologyChemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

FORTRESS PLUS: Novel Rehab for Older Adults’ Frailty

November 5, 2025

Gender and Surgery Side Influence Epilepsy Outcomes

November 5, 2025

Do Steroids Improve Cerebral Palsy-Free Survival in Preemies?

November 5, 2025

DRG Payments and Unintended Care Quality Effects in China

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Certain p53 Mutations May Aid in Cancer Combat, Study Finds

Advances in ML for Intrusion Detection Systems

FORTRESS PLUS: Novel Rehab for Older Adults’ Frailty

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.