• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new approach to peripheral nerve injury?

Bioengineer by Bioengineer
January 31, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Natural killer cells in the immune system could present a target

IMAGE

Credit: Alexander Davies, Ph.D. / Seoul National University and University of Oxford


In animal models of a totally crushed peripheral nerve, the damaged axons are broken down, allowing healthy ones to regrow. But humans rarely suffer complete axonal damage. Instead, axons tend to be partially damaged, causing neuropathic pain — a difficult-to-treat, chronic pain associated with nerve trauma, chemotherapy and diabetes. A new study in Cell, led by Michael Costigan, PhD, at Boston Children’s Hospital, explore the role of immune cells in breaking down damaged nerves. The findings may change our understanding of neuropathic pain and how to treat it.

The study was published online on January 31.

Targeted destruction

Early in their work, Costigan’s collaborators in Seoul, South Korea, noticed that immune cells called natural killer (NK) cells would strip away the axons of neurons in a petri dish. NK cells are part of our body’s rapid, innate immune response to threats such as viruses and cancer.

The team then started growing sensory neurons in a petri dish. They noticed these dissociated neurons began expressing large amounts of RAE1, a protein that invites NK cells to attack. When these neurons were co-cultured with activated NK cells, the NK cells began breaking down the injured nerves.

“We found that the natural killer cells would eat away at the axons of the neurons, but wouldn’t destroy their cell bodies,” says Costigan, co-senior author on the Cell paper with Seog Bae Oh, PhD, of Seoul National University. “This which was exciting as it allowed for the possibility that new, healthy axons could grow from them.”

Watching immune cells and neurons interact in live mice

The team then looked to see whether these results held up in a living animal. They increased the function of NK cells in mice and then partially crushed their sciatic nerve, the main nerve that runs down the back of the leg. Then they waited and watched.

“It was as if the neurons knew what happened,” says Costigan. “They started to express the receptors that leave them susceptible to a natural killer cell attack. And the natural killer cells were responding, coming into the nerve and clearing those damaged axons.”

Within days after the nerve crush, tests indicated that the immune-stimulated mice had significantly reduced sensation in the affected paw. But once the damaged axons were cleared, healthy ones began to grow back in their place. At around two weeks after the crush, the mice’s paws regained sensation.

Other mice, whose NK function wasn’t enhanced, had a similar recovery timeline. But because their partially damaged axons hadn’t been cleared away as efficiently, tests continued to show high levels of touch-induced pain 30 days or more after the injury. This scenario is analogous to human neuropathic pain, in which damaged nerves that aren’t fully broken down may continue sending pain signals to the brain, causing chronic pain and hypersensitivity.

Looking to the future

Interfering with the immune system always carries risk, but the team’s work suggests that finding a way to modulate NK cell function could perhaps clear out damaged axons, allowing healthy axonal regrowth and potentially decreasing chronic neuropathic pain. Ultimately, understanding more about the role of NK cells in selective axonal degeneration will lead to a greater understanding of the mechanisms behind neuropathic pain. And with greater understanding, better treatments will follow.

###

Alexander Davies, PhD, of Seoul National University and the University of Oxford, was the study’s first author. Supporters include the Korean Government MEST Basic Science Research Program, the National Research Foundation of Korea and the U.S. National Institutes of Health.

About Boston Children’s Hospital

Boston Children’s Hospital, the primary pediatric teaching affiliate of Harvard Medical School, is home to the world’s largest research enterprise based at a pediatric medical center. Its discoveries have benefited both children and adults since 1869. Today, more than 3,000 scientists, including 8 members of the National Academy of Sciences, 18 members of the National Academy of Medicine and 12 Howard Hughes Medical Investigators comprise Boston Children’s research community. Founded as a 20-bed hospital for children, Boston Children’s is now a 415-bed comprehensive center for pediatric and adolescent health care. For more, visit our Vector and Thriving blogs and follow us on social media @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Media Contact
Bethany Tripp
[email protected]
617-919-3110

Tags: BiologyImmunology/Allergies/AsthmaMedicine/HealthneurobiologyPain
Share12Tweet8Share2ShareShareShare2

Related Posts

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

December 3, 2025

Botanical Extracts’ Antibacterial Activity Boosted by Enhancers

December 3, 2025

Global Guidelines for Shared Decision-Making in Valvular Heart Disease

December 3, 2025

Hidradenitis Suppurativa Remission Achieved Using Bacteriophage Therapy

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.