• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A nacre-inspired separator coating for impact-tolerant lithium batteries

Bioengineer by Bioengineer
February 25, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SONG Yonghui

Lithium batteries are easy to explode? Scientists at University of Science and Technology of China (USTC) may have a way to prevent.

In modern life, lithium-ion batteries are used as mobile power sources in all aspects of daily life, thus the safety of lithium-ion batteries is very important. As a key component of lithium-ion batteries, the separators strongly influence the performance and in particular the safety of lithium batteries.

However, under the stress of external shock, the widely used microporous polyolefin separator is easily deformable, accompanied with the change of inside porous network, including the pore closure, leading to the inhomogeneous Li+ ion flux in the lithium battery, which will create high local current density to trigger lithium dendrite growth on the electrode, resulting in short-circuit and even explosion of lithium batteries.

Therefore, it is very important to develop a good impact resistant separator for improving the safety of lithium batteries.

Recently, a research team led by professor YAO Hongbin, NI Yong and YU Shuhong from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences proposed a nacre-inspired coating on the separator to improve the safety of lithium battery under external impact. The study was published in Advanced Materials.

In the study, they developed an alkaline-solution-induced etching method in the aragonite platelets to dissolve the protein matrix along with some parts of amorphous calcium carbonate to yield porous structure.

Then they developed a nacre-inspired separator via fabricating multilayered coating consisted of the porous aragonite platelets (PAPs) bonded by the polymer to replace the commercial ceramic nanoparticle coating. The PAP-coated separator (PAPCS) exhibits a higher tensile strength, better electrolyte wettability, and smaller thermal shrinkage in comparison to the commercial ceramic nanoparticle coated separator (CNCS).

Besides showing a little better thermal stability and electrochemical performance, the PAPCS can endow the battery with more excellent deformation-resistant capability than the CACS when encountering the external impaction. They used the same pellets to impact CNCS and nacre-inspired coating separator at the same height, and then used scanning electron microscopy to observe changes in the pore structure of the separator. They found that the pore structure inside the nacre-inspired coating separator was well retained by the impact of the small pellet, while the internal pores of the CNCS showed a very pronounced deformation due to the impact. Also, they showed that the pouch cell using the fabricated nacre-inspired separator exhibits good cycling stability under external shock, which is in sharp contrast to the fast short circuit of the pouch cell using commercial CNCS.

The developed nacre-inspired protection strategy will open a new avenue for improving the safety of lithium batteries. The researchers believe the methodology used in this study is very suitable for industrialization. However, more stringent testing of the current separator is required before it is actually industrialized. If it can pass the characterization test of the battery industry, this project can be industrialized in the next two years.

Next, the researchers are looking for novel bio-inspirations to develop new separators with high mechanical properties and lithium-ion transference number. They want to build a prismatic/nacre composite membrane material that further enhances the impact resistance of lithium-ion batteries. Their ultimate goal is to provide advanced separators for high performance and safe lithium batteries.

###

Media Contact
Jane FAN Qiong
[email protected]
86-551-636-07280

Related Journal Article

http://dx.doi.org/10.1002/adma.201905711

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Chain Recognition Advances Head–Tail Carboboration of Alkenes

September 1, 2025
Solar Orbiter Tracks Ultrafast Electrons Back to the Sun

Solar Orbiter Tracks Ultrafast Electrons Back to the Sun

September 1, 2025

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

Revealing the Unseen: A Breakthrough Method to Enhance Nanoscale Light Emission

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hyaluronidase Boosts Antibody Delivery in HIV Prevention Trial

MRI Reveals Lung Changes in Fetuses with Hernia

Parallel Ageing: Insights from ‘No Home Movie’

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.