• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A more accurate method to diagnose cancer subtypes

Bioengineer by Bioengineer
March 27, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Garvan Institute

Developed by researchers at the Garvan Institute of Medical Research, this potential diagnostic method screens a cancer sample for ‘fusion genes’, estimated to be linked to one in five cancers, and may provide a more accurate snapshot of rearranged DNA found in cancer. The test could help connect cancer patients with personalised treatments faster than current methods.

The team publish their method in Nature Communications on 27 March 2019.

Our DNA provides the code for our cells to function, and certain changes in this code can drive cancer development. One such change is gene ‘fusion’, where genes from different sections of the DNA, often different chromosomes, become joined together when DNA breaks and rejoins in an aberrant way. These fusion genes can produce abnormal transcripts coding for proteins which contribute to tumour formation and are estimated to drive one fifth of all human cancers.

Developing a broader diagnostic

Many cancer types, including leukaemias and sarcomas, are routinely screened for fusion genes using standard clinical diagnostic methods, such as fluorescence in situ hybridisation (FISH), however these methods have limitations.

“The standard FISH diagnostic for fusion genes has been used clinically for around 30 years but each test only provides one answer on one fusion gene, which is not the full story,” says co-senior author Dr Jim Blackburn, who leads the DNA and RNA Methodologies Group at the Garvan Institute. He adds that current methods can miss uncommon fusion genes, and that the wrong test could initially be requested. For instance, a metastasised sarcoma found in the lung – without knowledge of the original tumour – may be incorrectly screened for fusion genes commonly associated with lung cancer.

“The approach we’ve taken in our study is to wipe away the information about where the cancer is found – we take a broad view and just look at genes that are known to be involved in fusions across all cancer subtypes,” says Dr Erin Heyer, first author of the study.

To develop their new method, the Garvan researchers investigated whether sequencing the cancer cells’ RNA – a ‘transcript’ of DNA that cells use to make proteins – could provide a more accurate snapshot of fusion genes than the FISH method. The team designed two extensive panels as tools to allow them to screen the RNA of all known fusion genes at once – one for blood cancers and one for solid tumours.

The team tested their new method using clinical cancer patient samples, including samples from the Molecular Screening and Therapeutics (MoST) clinical trials, and discovered that their RNA analysis not only more accurately detected fusion genes previously identified with FISH analyses, but that it identified 20 percent more fusion genes that the FISH analyses missed.

“We hope that our two diagnostic tests will not only save time and money, but will better detect fusion genes in cancers that don’t fit the norm,” says Dr Blackburn.

Targeted therapies for some fusion genes already exist. One example is larotrectinib, which reduces the activity of an overactive enzyme encoded by fusion of NTRK genes with other gene partners. But assigning such specific treatments requires identifying the right fusion gene, say the Garvan researchers.

The team is now seeking funding to clinically accredit their two tests, to progress the method from a lab technique to a clinical diagnostic. “Rather than just being a research project, this method has direct application for cancer patients,” says Dr Blackburn. “We want to help make diagnosing patients more accurate and more efficient, so that they can receive the right treatments faster.”

###

This project was supported by generous donations from the Paramor Family and the Marrocco Family.

Media Contact
Viviane Richter
[email protected]

Tags: cancerDiagnosticsGeneticsHealth CareMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025
blank

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.