• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A molecular machine’s secret weapon exposed

Bioengineer by Bioengineer
February 23, 2023
in Biology
Reading Time: 3 mins read
0
Katarina Meze in Joshua-Tor lab
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

RNAs are having a moment. The foundation of COVID-19 vaccines, they’ve made their way from biochemistry textbooks into popular magazines and everyday discussions. Entire companies have launched dedicated to RNA research. These tiny molecules are traditionally known for helping cells make proteins, but they can do much more. They come in many shapes and sizes, from short and simple hairpin loops to long and seemingly tangled arrangements. RNAs can help activate or deactivate genes, change the shape of chromosomes, and even destroy other RNA molecules.

Katarina Meze in Joshua-Tor lab

Credit: Joshua-Tor lab/CSHL

RNAs are having a moment. The foundation of COVID-19 vaccines, they’ve made their way from biochemistry textbooks into popular magazines and everyday discussions. Entire companies have launched dedicated to RNA research. These tiny molecules are traditionally known for helping cells make proteins, but they can do much more. They come in many shapes and sizes, from short and simple hairpin loops to long and seemingly tangled arrangements. RNAs can help activate or deactivate genes, change the shape of chromosomes, and even destroy other RNA molecules.

Unfortunately, when RNA malfunctions, it can result in cancer and developmental disorders.

It takes a lot to keep RNAs in check. Our cells have molecular “machines” that eliminate RNAs at the right time and place. Most come equipped with a “motor” to generate the energy needed to untangle RNA molecules. But one machine in particular, named Dis3L2, is an exception. The enzyme can unwind and destroy RNA molecules on its own. This has puzzled scientists for years. Now, Cold Spring Harbor Laboratory (CSHL) biochemists have pieced together what’s happening.

It turns out Dis3L2 changes shape to unsheathe an RNA-splitting wedge.

Using state-of-the-art molecular imaging technology, CSHL Professor and HHMI Investigator Leemor Joshua-Tor and her team captured Dis3L2 at work. They fed the molecular machine hairpin snippets of RNA and imaged it getting “eaten” at various stages. After the machine had chewed up the tip of the RNA, it swung open a big arm of its body to peel apart the hairpin and finish the job. 

“It’s dramatic,” Joshua-Tor says. “We know things change conformation. They buckle. But opening something out like that and exposing a region in this way—we didn’t quite see something like this before.”

Joshua-Tor’s team then began tinkering with the Dis3L2 machine, searching for the gears and parts enabling it to unwind and destroy RNA. The researchers narrowed it down to a protruding wedge left unsheathed after the machine shifted shapes. If the researchers removed the wedge, Dis3L2 could no longer untangle the RNA hairpin, putting the machine out of commission.

The findings reveal a surprising new way that RNA-controlling machines in our cells execute their tasks. Rather than solid structures, these molecular workhorses need to be considered malleable and versatile. This new outlook may help scientists develop better treatments for diseases and disorders caused by RNA gone haywire. “We have to start thinking about these things as much more dynamic entities,” Joshua-Tor says, “and take that into account when we are designing therapeutics.”

 



Journal

Nature Structural & Molecular Biology

DOI

10.1038/s41594-023-00923-x

Article Title

A shape-shifting nuclease unravels structured RNA

Article Publication Date

23-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.