• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A microscope that can monitor the development of the heart

Bioengineer by Bioengineer
October 30, 2023
in Health
Reading Time: 2 mins read
0
Juhyun Lee
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The ability to dynamically track the movement of cells is essential for modeling cellular interactions as they form organs such as the heart. But current microscope technology isn’t up to the task of capturing those movements.

Juhyun Lee

Credit: UT Arlington

The ability to dynamically track the movement of cells is essential for modeling cellular interactions as they form organs such as the heart. But current microscope technology isn’t up to the task of capturing those movements.

Juhyun Lee, associate professor in the Bioengineering Department at The University of Texas at Arlington, recently received a five-year, $1.94 million grant from the National Institutes of Health to develop a 4D high-resolution imaging system to quantify cell tracking.

Traditional microscopes allow users to zoom in to view an individual cell. However, doing so obscures that cell’s relationship to everything around it. Likewise, when the microscope is zoomed out to view the full field, the cell details are no longer visible.

Lee’s system will use microscopy and advanced computational post-processing to provide the next generation of imaging tools for biomedical researchers. His high-resolution microscope will zoom in and sweep left and right to scan an entire field of view. Those images will be stitched together to show a complete view, and an additional scan will create a 3D model.

“We are trying to quantify where each cell will go as the heart develops. The whole idea of this tool is to enable us to see the whole picture in high resolution,” Lee said. “Cells that form organs with dynamic motion, like the heart, are fast-moving. Using methods based on the motion and orientation of a cell, we can predict where it will go.”

Lee’s research has focused on how the heart develops, and he has received multiple previous grants focused on developing a new microscope that can capture 3D motion and add time. With this, he can construct a 4D beating heart using optical imaging techniques with fluorescent nanoparticles in a zebrafish. It is this microscope that will be used in his new grant.

Developmental biologists could eventually use Lee’s system to predict early cell development, making it valuable for detecting possible anomalies.

“The integration of technology and biology is a constant goal in the biomedical engineering field, and Dr. Lee’s work to develop imaging systems that can assist in our knowledge of cell activity and development is at the forefront of that effort,” said Michael Cho, the Alfred R. Potvin and Janet H. Potvin Endowed Chair in Bioengineering.

  • Written by Jeremy Agor, College of Engineering

 



Share12Tweet8Share2ShareShareShare2

Related Posts

Insights on Menstrual Health in Eating Disorder Units

September 12, 2025

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

September 12, 2025

Choosing Wisely: A Challenge in Clinical Reasoning

September 12, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

Insights on Menstrual Health in Eating Disorder Units

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.