• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A method has been developed to study the ‘traces’ of coronal mass ejections at the Sun.

Bioengineer by Bioengineer
June 10, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: STEREO/EUVI

Scientists at Skolkovo Institute of Science and Technology (skoltech), together with colleagues from the Karl-Franzens University of Graz and the Kanzelhoehe Observatory (Austria) developed an automatic method for detecting “coronal dimmings”, or “traces” of coronal mass ejections at the Sun, and also proved that they are reliable indicators of the early diagnosis of powerful emissions of energy from the atmosphere of the Sun, traveling to Earth at great speed.

Coronal mass ejections are among the most striking manifestations of solar activity. Huge plasma clouds pierced by magnetic lines are ejected from the atmosphere of the Sun into the surrounding space at speeds of 100-3500 km/s. If a stream of charged particles reaches the Earth, auroras and magnetic storms arise in its atmosphere. This can lead to serious problems in the operation of electrical equipment and signal loss, and spacecraft and astronauts in outer space are most exposed to danger.

Coronal mass ejections occur in the atmosphere of the Sun, the solar corona, which is very sparse and does not shine as bright as the solar disk. Therefore, the evolution of these ejections can be observed only with the help of special tools – coronagraphs, creating an artificial solar eclipse and blocking the bright Sun with a dark disk. Coronagraphs installed on Earth do not provide accurate results due to the bright glow of the sky, therefore they are usually installed on spacecraft. To date, there are only two coronagraphs in space: aboard the STEREO-A and SOHO satellites; new missions are expected no earlier than in a few years. However, coronagraph observations have a significant drawback: blocking the solar disk by several radii makes it impossible to discern the early evolution of the ejection, but only its shape at a developed stage.

But one can approach the solution of this problem from another angle and study the “trace” directly on the Sun – coronal dimmings, rather than the coronal ejection itself. If you observe the solar corona in the ultraviolet, then you can see the gaps in the intensity – dark spots that are associated with the loss of substance in the corona during the ejection of plasma, – these are dimmings. Due to the unique position of the STEREO-A, STEREO-B and SDO satellites, it was for the first time possible to compare the size and brightness of coronal dimming from different observation points. The obtained results confirm the earlier work of the co-authors of the study from the University of Graz, where the same dimmings were studied on the solar disk using images of the SDO satellite.

“We showed that by observing dimmings on the Sun, it is possible to estimate the mass and speed of the coronal mass ejection at early stages – key parameters that allow us to predict the scale of the event and the time of its expected consequences on Earth. This is of great applied importance for the development of operational space weather services, as well as for future space missions to the Lagrange point L5. Spacecraft will be located in the orbit, always retaining the same position with respect to the Earth. This will make it possible to detect traces of coronal mass ejections directly on the Sun, as well as to predict the parameters of powerful ejections before they are seen from Earth, “says a graduate student at the Skoltech Space Center and the first author of the study, Galina Chikunova.

“Humanity is entering a new era in the exploration of outer space, the creation of new space technologies that are gradually moving into our daily lives. At present, it is very important to study the nature of explosions on the Sun, to develop methods for their early forecasting, in order to protect our society and technologies from the dangers of space weather, to turn off equipment in satellites in time, to move astronauts to a protected area, to cancel satellite maneuvers, air travel through the polar regions, report possible navigation problems. And whatever storms may rage, we wish everyone a good weather in space,” says Tatyana Podladchikova, professor at the Skoltech Space Center, research co-author.

###

Media Contact
Alina Chernova
[email protected]

Original Source

https://www.skoltech.ru/en/2020/06/a-method-has-been-developed-to-study-the-traces-of-coronal-mass-ejections-at-the-sun/

Related Journal Article

http://dx.doi.org/10.3847/1538-4357/ab9105

Tags: AstrophysicsMeteorologySpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

Revealing the Unseen: A Breakthrough Method to Enhance Nanoscale Light Emission

August 29, 2025

Fluorescent Smart Eye Patch Revolutionizes Monitoring of Eye Health

August 29, 2025

Protective Dual Shell Extends Lifespan of Lithium-Rich Batteries

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Muscle Mass for Stroke Rehab Success

Examining Parental Anxiety in Pediatric Emergency Departments

Dedicated Teams Revolutionizing Organ Recovery Efforts

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.