• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A hidden route for fatty acids can make cancers resistant to therapy

Bioengineer by Bioengineer
February 6, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fatty acid metabolism is an essential process in tumor growth and proliferation. Despite different attempts to block fatty acid metabolism as a therapeutic strategy to reduce tumor size and growth, the outcome was not always positive. Researchers from the lab of Prof. Sarah-Maria Fendt at the VIB-KU Leuven Center for Cancer Biology now demonstrate that certain tumor cells use an alternative – previously unexplored – pathway to produce fatty acids. This finding can explain the resistance of particular cancer types to fatty acid metabolism inhibition. It is essential to gain more insights in this process to develop novel therapeutic strategies. The results are published in the renowned journal Nature.

Tumors grow and proliferate, and to do so cancer cells require the duplication of building block molecules. This includes nucleotides to make DNA, but also fatty acids to make the cell boundaries i.e. the cell membrane. Not surprisingly, many cancer cells have upregulated metabolic reactions that lead to increased nucleotide and fatty acid production. Current developed therapies focus on the inhibition of nucleotide and fatty acid generation to block tumor growth. This strategy has proven to be successful in the case of nucleotide metabolism: chemotherapeutic agents currently used in cancer treatment such as 5FU and methotrexate inhibit tumor growth by targeting nucleotide generation. Surprisingly however, this effort had limited success for fatty acid metabolism inhibition.

Kim Vriens, Stefan Christen and colleagues in the lab of Sarah-Maria Fendt (VIB-KU Leuven) addressed the question why many cancer cells are resistant to the inhibition of fatty acid metabolism, and particular to the inhibition of the enzyme stearoyl-CoA desaturase (SCD). This enzyme has always been considered to be the only source of newly produced mono-unsaturated fatty acids, which are required for membrane generation. However, the researchers now found that some cancer cells exploit a unusual metabolic pathway to produce mono-unsaturated fatty acids. This pathway – novel in cancer cells – requires the enzyme fatty acid desaturase (FADS2) and results in the production of the unusual fatty acid sapienate. The presence of this novel and alternative metabolic pathway was identified in isolated cancer cells and in lung and liver tumors samples from mice and human patients.

Prof. Sarah-Maria Fendt (VIB-KU Leuven Center for Cancer Biology): “The newly discovered sapienate metabolism constitutes an alternative route for cancer cells to process the fatty acids required for membrane synthesis. These findings can explain the resistance of many cancer types to the inhibition of fatty acid desaturation. Since fatty acids are essential for tumor growth we expect that further dissection of the sapienate metabolism pathway will lead to a better understanding of how cancer cells grow and will thus open new avenues to better target this deadly disease. Moreover, this exciting discovery was supported by a fruitful collaboration between basic scientists and clinicians across three continents.”

###

Publication

Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity, Vriens et al., Nature 2019

Media Contact
Sooike Stoops
[email protected]
32-924-46611

Tags: BiologycancerMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

Unlocking Brain Lipids: New Neurodegenerative Atlas

September 22, 2025

Bottom-Up Septal Circuit Controls Anticipatory Drinking

September 22, 2025

ORESTES Study: COPD Treatment Outcomes in Spain

September 22, 2025

Psychological Distress Following Heart Attacks Linked to Increased Risk of Future Cardiac Conditions

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists’ Mental Models Reveal Microplastics Insights

Ice Accelerates Iron Dissolution More Than Liquid Water, Study Finds

Unlocking Brain Lipids: New Neurodegenerative Atlas

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.