• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A French team has improved the measurement of a fundamental physical constant

Bioengineer by Bioengineer
December 2, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pierre Cladé, Saïda Guellati-Khélifa et Tatsumi Aoyama

The validation and application of theories in physics require the measurement of universal values known as fundamental constants. A team of French researchers* has just conducted the most accurate measurement to date of the fine-structure constant, which characterizes the strength of interaction between light and charged elementary particles, such as electrons. This value has just been determined with an accuracy of 11 significant digits; improving the precision of the previous measurement by a factor of 3.** The scientists achieved such precision by enhancing their experimental set-up, in an effort to reduce inaccuracies and to control effects that can create perturbations of the measurement. The experiment involves cold rubidium atoms with a temperature approaching absolute zero. When they absorb photons, these atoms recoil at a velocity that depends on their mass. The highly precise measurement of this phenomenon helps to improve the knowledge of the fine-structure constant. These results, which will appear in Nature on 3 December, open new prospects for testing the Standard Model’s theoretical predictions.*** The use of more accurate constants can help to answer fundamental questions, such as the origin of dark matter in the Universe.

###

*- The physicists are working at the Kastler Brossel Laboratory (CNRS/Sorbonne Université/ENS Paris/Collège de France) and the National Conservatory of Arts and Crafts (CNAM).

**- The new value of the fine-structure constant is α-1= 137.035999206 (with a relative precision of 81 parts-per-trillion).

***- The Standard Model of particle physics studies the elementary components of matter.

Media Contact
Francois Maginiot
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2964-7

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Latch, load and release: Elastic motion makes click beetles click, study finds

January 18, 2021
IMAGE

How cells move and don’t get stuck

January 18, 2021

New method to assist fast-tracking of vaccines for pre-clinical tests

January 18, 2021

Synthesis of potent antibiotic follows unusual chemical pathway

January 18, 2021
Next Post
IMAGE

Protein molecules in cells function as miniature antennas

IMAGE

KIT and Audi are working on recycling method for automotive plastics

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    58 shares
    Share 23 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyMaterialsGeneticsPublic HealthCell BiologyInfectious/Emerging DiseasescancerTechnology/Engineering/Computer ScienceMedicine/HealthClimate ChangeChemistry/Physics/Materials SciencesEcology/Environment

Recent Posts

  • Lasers & molecular tethers create perfectly patterned platforms for tissue engineering
  • Latch, load and release: Elastic motion makes click beetles click, study finds
  • Smart vaccine scheme quick to curb rabies threat in African cities
  • How cells move and don’t get stuck
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In