• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A French team has improved the measurement of a fundamental physical constant

Bioengineer by Bioengineer
December 2, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pierre Cladé, Saïda Guellati-Khélifa et Tatsumi Aoyama

The validation and application of theories in physics require the measurement of universal values known as fundamental constants. A team of French researchers* has just conducted the most accurate measurement to date of the fine-structure constant, which characterizes the strength of interaction between light and charged elementary particles, such as electrons. This value has just been determined with an accuracy of 11 significant digits; improving the precision of the previous measurement by a factor of 3.** The scientists achieved such precision by enhancing their experimental set-up, in an effort to reduce inaccuracies and to control effects that can create perturbations of the measurement. The experiment involves cold rubidium atoms with a temperature approaching absolute zero. When they absorb photons, these atoms recoil at a velocity that depends on their mass. The highly precise measurement of this phenomenon helps to improve the knowledge of the fine-structure constant. These results, which will appear in Nature on 3 December, open new prospects for testing the Standard Model’s theoretical predictions.*** The use of more accurate constants can help to answer fundamental questions, such as the origin of dark matter in the Universe.

###

*- The physicists are working at the Kastler Brossel Laboratory (CNRS/Sorbonne Université/ENS Paris/Collège de France) and the National Conservatory of Arts and Crafts (CNAM).

**- The new value of the fine-structure constant is α-1= 137.035999206 (with a relative precision of 81 parts-per-trillion).

***- The Standard Model of particle physics studies the elementary components of matter.

Media Contact
Francois Maginiot
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2964-7

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Chemically Tuning Quantum Spin–Electric Coupling in Magnets

Chemically Tuning Quantum Spin–Electric Coupling in Magnets

August 27, 2025

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gender Variations in Health-Related Quality of Life

Comparing Tactile and Auditory Relief for Preterm Pain

Nutritional Risk Scores Predict Digestive Tumor Outcomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.