• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A DNA-based molecular tagging system that could take the place of printed barcodes

Bioengineer by Bioengineer
November 3, 2020
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kathryn Doroschak/University of Washington

Many people have had the experience of being poked in the back by a plastic tag while trying on clothes in a store. That is just one example of radio frequency identification technology, which has become a mainstay not just in retail but also in manufacturing, logistics, transportation, health care and more. Other tagging systems include the scannable barcode and the QR code.

Despite their near ubiquity, these object tagging systems have their shortcomings: They may be too large or inflexible for certain applications, they are easily damaged or removed, and they may be impractical to apply in high quantities. But recent advancements in DNA-based data storage and computation offer new possibilities for creating a tagging system that is smaller and lighter than conventional methods.

That’s the point of Porcupine, a new molecular tagging system introduced by University of Washington and Microsoft researchers. These tags can be programmed and read within seconds using a portable nanopore device. In a new paper published Nov. 3 in Nature Communications, the team describes how dehydrated strands of synthetic DNA can take the place of bulky plastic or printed barcodes. Building on recent developments in DNA sequencing technologies and raw signal processing tools, the team’s inexpensive and user-friendly design forgoes the need for access to specialized labs and equipment.

“Molecular tagging is not a new idea, but existing methods are still complicated and require access to a lab, which rules out many real-world scenarios,” said lead author Kathryn Doroschak, a UW doctoral student in the Paul G. Allen School of Computer Science & Engineering. “We designed the first portable, end-to-end molecular tagging system that enables rapid, on-demand encoding and decoding at scale, and which is more accessible than existing molecular tagging methods.”

Instead of radio waves or printed lines, the Porcupine tagging scheme relies on a set of distinct DNA strands called molecular bits, or “molbits” for short, that incorporate highly separable nanopore signals to ease later readout. Each individual molbit comprises one of 96 unique barcode sequences combined with a longer DNA fragment selected from a set of predetermined sequence lengths. Under the Porcupine system, the binary zeros and ones of a digital tag are signified by the presence or absence of each of the 96 molbits.

“We wanted to prove the concept while achieving a high rate of accuracy, hence the initial 96 barcodes, but we intentionally designed our system to be modular and extensible,” said co-author Karin Strauss, senior principal research manager at Microsoft Research and affiliate professor in the Allen School. “With these initial barcodes, Porcupine can produce roughly 4.2 billion unique tags using basic laboratory equipment without compromising reliability upon readout.”

Although DNA is notoriously expensive to read and write, Porcupine gets around this by prefabricating the fragments of DNA. In addition to lowering the cost, this approach has the added advantage of enabling users to arbitrarily mix existing strands to quickly and easily create new tags. The molbits are prepared for readout during initial tag assembly and then dehydrated to extend the shelf life of the tags. This approach protects against contamination from other DNA present in the environment while simultaneously reducing readout time later.

Another advantage of the Porcupine system is that molbits are extremely tiny, measuring only a few hundred nanometers in length. In practical terms, this means each molecular tag is small enough to fit over a billion copies within one square millimeter of an object’s surface. This makes them ideal for keeping tabs on small items or flexible surfaces that aren’t suited to conventional tagging methods. Invisible to the naked eye, the nanoscale form factor also adds another layer of security compared to conventional tags.

“Unlike existing inventory control methods, DNA tags can’t be detected by sight or touch. Practically speaking, this means they are difficult to tamper with,” said senior author Jeff Nivala, a research scientist at the Allen School. “This makes them ideal for tracking high-value items and separating legitimate goods from forgeries. A system like Porcupine could also be used to track important documents. For example, you could envision molecular tagging being used to track voters’ ballots and prevent tampering in future elections.”

To read the data in a Porcupine tag, a user rehydrates the tag and runs it through a portable nanopore device. To demonstrate, the researchers encoded and then decoded their lab acronym, “M-I-S-L,” reliably and within a few seconds using the Porcupine system. As advancements in nanopore technologies make them increasingly affordable, the team believes molecular tagging could become an increasingly attractive option in a variety of real-world settings.

“Porcupine is one more exciting example of a hybrid molecular-electronic system, combining molecular engineering, new sensing technology and machine learning to enable new applications,” said co-author Luis Ceze, a professor in the Allen School.

###

p>Other contributors to the project include Allen School undergraduate student Karen Zhang, master’s student Aishwarya Mandyam and doctoral student Melissa Queen. This research was funded in part by the Defense Advanced Research Project Agency under its Molecular Informatics Program and gifts from Microsoft.

For more information contact Doroschak at [email protected] and Nivala at [email protected].

Media Contact
Sarah McQuate
[email protected]

Tags: BiotechnologyComputer ScienceHardwareMultimedia/Networking/Interface DesignTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
blank

March5 Drives Trim28 Degradation to Preserve β-Cells

August 1, 2025

Breakthrough in Melanoma Guidance System Offers New Hope to Halt Metastasis

August 1, 2025

SFU Researchers Unveil Innovative Tool for Enhanced Blender-Style Lighting Control in Photographs

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

March5 Drives Trim28 Degradation to Preserve β-Cells

Breakthrough in Melanoma Guidance System Offers New Hope to Halt Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.