• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A CNIO study links severe COVID-19 disease to short telomeres

Bioengineer by Bioengineer
January 11, 2021
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The study was carried out with data from 89 patients admitted to the IFEMA Hospital

IMAGE

Credit: CNIO

Patients with severe COVID-19 disease have significantly shorter telomeres, according to a study conducted by researchers at the Spanish National Cancer Research Centre (CNIO) in collaboration with the COVID-IFEMA Field Hospital, published in the journal Aging. The study, led by Maria A. Blasco and whose first authors are Raúl Sánchez and Ana Guío-Carrión, postulates that telomere shortening as a consequence of the viral infection impedes tissue regeneration and that this is why a significant number of patients suffer prolonged sequelae.

Blasco was already developing a therapy to regenerate lung tissue in pulmonary fibrosis patients; she now believes that this treatment -which should still take at least a year and a half to become available- could also help those who have lung lesions remaining after overcoming COVID-19.

Telomeres and tissue regeneration

The Telomeres and Telomerase Group, led by Blasco at the CNIO, has been researching the role of telomeres in tissue regeneration for decades. Telomeres are structures that protect the chromosomes within each cell of the organism. It is known that telomere length is an indicator of ageing: each time a cell divides, its telomeres shorten until they can no longer perform their protective function and the cell, which now becomes damaged, stops dividing. Throughout life, cells are constantly dividing to regenerate tissues, and when they stop doing so because the telomeres are too short, the body ages.

In recent years, researchers have shown in mice that it is possible to reverse this process by activating the production of telomerase, which is the enzyme in charge of making the telomeres longer. In animals, telomerase activation is effective in treating diseases associated with ageing and telomere damage, such as pulmonary fibrosis.

COVID-19 as a regenerative disease

In pulmonary fibrosis the lung tissue develops scars and becomes rigid, causing a progressive loss of breathing capacity. The CNIO group has shown in previous studies that one of the causes of the disease is damage to the telomeres of the cells involved in regenerating the lung tissue, the alveolar type II pneumocytes. And these are precisely the cells that the SARS-CoV-2 coronavirus infects in lung tissue.

“When I read that type II alveolar pneumocytes were involved in COVID-19, I immediately thought that telomeres might be involved,” says Blasco.

In the Aging paper, the researchers write: “It caught our attention that a common outcome of SARS-CoV-2 infection seems to be the induction of a fibrosis-like phenotype in lung and kidney, suggesting that the viral infection may be exhausting the regenerative potential of tissues.”

The authors propose that it is the short telomeres that hamper tissue regeneration after infection. As Blasco explains, “we know that the virus infects alveolar type II pneumocytes and that these cells are involved in lung regeneration; we also know that if they have telomeric damage they cannot regenerate, which induces fibrosis. This is what is seen in patients with lung lesions after COVID-19: we think they develop pulmonary fibrosis because they have shorter telomeres, which limits the regenerative capacity of their lungs.”

Samples of patients in a field hospital

The data presented in the ‘Aging’ paper provide evidence in favour of this hypothesis, by finding an association between greater severity of COVID-19 and shorter telomeres.

Despite the difficulties arising from conducting research at the height of the pandemic -“the hospital facilities for COVID-19 patients were overwhelmed,” Blasco says- it was possible to analyse the telomeres of 89 patients admitted to the field hospital at the IFEMA in Madrid using several techniques.

As in the general population, the average length of the telomeres decreased as age increased in the patients studied. Furthermore, as the most severe patients are also the oldest patients, there is also a correlation between greater severity and shorter telomere length.

What could not be foreseen, and this is the most important finding, is that the telomeres of the most seriously ill patients were also shorter, irrespective of age.

The researchers write: “Interestingly, we also found that those patients who have more severe COVID-19 pathologies have shorter telomeres at different ages compared to patients with milder disease.”

And they add: “These findings demonstrate that molecular hallmarks of ageing, such as the presence of short telomeres, can influence the severity of COVID-19 pathologies.”

Gene therapy for patients with post-COVID-19 pulmonary injury

The intention of the researchers is now to demonstrate a causal relationship between reduced telomere length and pulmonary sequelae of COVID-19. To do this, they will infect mice that have short telomeres and are not able to produce telomerase with SARS-CoV-2; without telomerase, the telomeres cannot be repaired and as a consequence lung tissue regeneration cannot take place. If the hypothesis of Blasco’s group is correct, mice with short telomeres and without telomerase should develop more severe pulmonary fibrosis than normal mice.

Confirmation that short telomeres hamper the recovery of severe patients would open the door to new treatment strategies, such as therapies based on telomerase activation.

“Given that short telomeres can be made longer again by telomerase, and given that in previous studies we have shown that telomerase activation has a therapeutic effect on diseases related to short telomeres, such as pulmonary fibrosis, it is tempting to speculate that this therapy could improve some of the pathologies that remain in COVID-19 patients once the viral infection has been overcome, such as pulmonary fibrosis.”

Last year the CNIO and the Autonomous University of Barcelona, UAB, created a new spin-off company, Telomere Therapeutics, with the specific aim of developing a telomerase-based gene therapy for the treatment of different pathologies related to telomere shortening, such as pulmonary fibrosis and renal fibrosis. This would be a potentially useful type of therapy in patients with remaining lung damage after COVID-19.

###

The study was funded by the Spanish Ministry of Science and Innovation, the National Institute of Health Carlos III, the Community of Madrid, the Botín Foundation and Banco Santander through Santander Universidades, and World Cancer Research.

Reference article: Shorter telomere lengths in patients with severe COVID-19 disease. Raul Sanchez-Vazquez, Ana Guío-Carrión, Antonio Zapatero-Gaviria, Paula Martínez, Maria A. Blasco (Aging, 2021). DOI: https://doi.org/10.18632/aging.202463

Media Contact
Vanessa Pombo
[email protected]

Original Source

https://www.cnio.es/en/news/publications/cnio-study-links-severe-covid-19-disease-to-short-telomeres/

Related Journal Article

http://dx.doi.org/10.18632/aging.202463

Tags: AgingBiologyCell BiologyEpidemiologyGene TherapyGeneticsMedicine/HealthMolecular BiologyPulmonary/Respiratory MedicineVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Dental Stem Cells Differentiate on Biodentine Nanofibers

Dental Stem Cells Differentiate on Biodentine Nanofibers

August 2, 2025
2-Hydroxyglutarate Drives Brown Fat Whitening via Nuclear Softening

2-Hydroxyglutarate Drives Brown Fat Whitening via Nuclear Softening

August 2, 2025

Special Collection: 2024 Aging Innovation Conference

August 2, 2025

Magnesium Implants Boost Bone-Immune Health In Vitro

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

Dental Stem Cells Differentiate on Biodentine Nanofibers

CSF ctDNA: New Biomarker for NSCLC Brain Mets

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.