• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

A cascade of immune processes offers insights to triple-negative breast cancer

Bioengineer by Bioengineer
May 24, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Rogel Cancer Center

ANN ARBOR, Michigan — Cancer is crafty. To survive and thrive, tumors find a way of thwarting our body's natural systems.

By looking at these systems, researchers at the University of Michigan Rogel Cancer Center have discovered that tumor cells reprogram metabolic pathways to gain control over a type of immune cell that allows cancer growth.

Myeloid-derived suppressor cells live in the tumor microenvironment and work to block cancer immunity. They also encourage a stem cell-like growth that's linked to more aggressive cancer. Patients with a lot of these suppressor cells typically have worse outcomes. Essentially, their immune system isn't strong enough to fight against the tumor.

Further, when there are a large number of myeloid-derived suppressor cells, immunotherapy treatments tend to be ineffective because the immune T-cells are suppressed.

By looking at triple-negative breast cancer cells, researchers found that the metabolic process by which cells break down glucose also regulates the expression of a specific isoform of C/EBP-beta that in turn causes more suppressor cells to develop. The immune system can't mount enough of an assault on the tumor cells, which translates to poor outcomes in triple-negative breast cancer patients.

"We don't have many treatment options for triple-negative breast cancer. One of the immunological reasons may be that these tumors have a large number of myeloid suppressor cells. This could be an issue. We hope that by understanding the biology better, it may lead to new ways to help these patients," says Weiping Zou, M.D., Ph.D., the Charles B. de Nancrede Professor of Surgery, Pathology, Immunology and Biology at the University of Michigan.

Essentially, it's a cascade: The process glycolysis initiates things. It targets a molecular mechanism called LAP, a specific isoform of C/EBP-beta, which then controls expression of G-CSF and GM-CSF, small proteins made by tumor cells, which support myeloid suppressor cells and result in immunosuppression.

Researchers examined this relationship in triple-negative breast cancer cell lines and in mouse models. They then looked at patient tumor samples to assess how the metabolic pathway, the number of suppressor cells and immune signatures linked with patient survival. Looking at samples from 250 triple-negative breast cancer patients, they found that when the metabolic pathway for glycolysis was enriched, so were the immune suppressor cells – and this linked with worse overall survival. In contrast, tumors with a high T-cell signature exhibited fewer of these suppressor cells and the patients had better outcomes.

###

The researchers will examine potential mechanisms to target this cascade. The study is published in Cell Metabolism.

Additional authors: Wei Li, Takashi Tanikawa, Ilona Kryczek, Houjun Xia, Gaopeng Li, Ke Wu, Shuang Wei, Lili Zhao, Linda Vatan, Bo Wen, Pan Shu, Duxin Sun, Celina Kleer, Max Wicha, Michael Sabel, Kaixiong Tao, Guobin Wang

Funding: National Cancer Institute grants CA123088, CA099985, CA193136, CA152470, CA46592; Major State Basic Research Development Program of China

Disclosure: None

Reference: Cell Metabolism, doi: 10.1016/j.cmet.2018.04.022, published May 24, 2018

Resources:

University of Michigan Rogel Cancer Center, http://www.rogelcancercenter.org

Michigan Health Lab, http://www.MichiganHealthLab.org

Michigan Medicine Cancer AnswerLine, 800-865-1125

Media Contact

Nicole Fawcett
[email protected]
734-764-2220
@umichmedicine

http://www.med.umich.edu

Related Journal Article

http://dx.doi.org/10.1016/j.cmet.2018.04.022

Share12Tweet8Share2ShareShareShare2

Related Posts

Breast Cancer Molecular Markers in Iranians: A Review

September 11, 2025

New Study Uncovers Hidden Risks Following Cervical Cancer

September 11, 2025

Scientists Discover Inherent ‘Immunological Memory’ in Pathogen-Fighting Cells

September 11, 2025

RAB26 Identified as a Promising Therapeutic Target for Advanced Prostate Cancer

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.