• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, June 7, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A brand-new display form: Integral imaging-based tabletop light field 3D display with large viewing angle

Bioengineer by Bioengineer
May 11, 2023
in Science News
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new publication from Opto-Electronic Advances, 10.29026/oea.2023.220178 discusses integral imaging-based tabletop light field 3D display with large viewing angle.

FIG 1

Credit: OEA

A new publication from Opto-Electronic Advances, 10.29026/oea.2023.220178 discusses integral imaging-based tabletop light field 3D display with large viewing angle.

 

Light field 3D display is an innovative glasses-free 3D display technology that provides a more accurate reconstruction of 3D information than 2D and traditional 3D displays. With its ability to produce realistic, vivid, and intuitive 3D images, it has a good potential for development. In particular, the tabletop light field 3D display provides a new display form that combines the features of a real-world tabletop and a digital 3D display. This allows users to interactively share and view 3D images while sitting or standing around the display for collaborative work and interaction. This technology has potential for applications in the fields of electronic sand tables, conference, tabletop games, and so on.

 

The key to a good 3D tabletop viewing experience is achieving a large 3D viewing angle in the radial direction, which enables users to view correct 3D images from large oblique viewing positions without having to cling to the table. Additionally, correct perspective and parallax in the radial direction are also essential. However, a large radial viewing angle and correct radial perspective and parallax are still out of reach in current research results due to limited spatial information.

 

Fortunately, by employing light field 3D display technology with full parallax, it is possible to achieve correct perspective and parallax in the radial direction. By developing a control scheme for reconstructed light rays that allow for a large viewing angle, it is possible to achieve both a large viewing angle and correct perspective and parallax in the radial direction simultaneously. The authors of this article report a tabletop light field 3D display based on integral imaging. This work achieved a large radial viewing angle of 68.7° in a large display size of 43.5 inches, with smooth and correct perspective and parallax in the radial direction.

 

The authors have developed a compound lens array with a large relative aperture based on the discrete light field reproduction concept in integral imaging. This lens array modifies the direction of light rays emerging from 2D display pixels in a wide range of space, ensuring that light emerging from 3D image points exits at a large angle and then reaches the human eyes around. The tabletop light field 3D display comprises three main components, namely an ultra-high-resolution LCD panel with 7680 × 8640 pixels, a compound lens array consisting of thousands of compound lens units arranged in a regular hexagonal pattern, and a light shaping diffuser screen, as shown in Fig. 1. Each compound lens unit contains three lenses arranged along a common axis, and the compound lens array design focuses on balancing the parameters of depth of field and 3D spatial resolution, which are constrained by the 3D viewing angle. Additionally, the imaging quality is superior at large field angles compared to central field angles.

 

In addition to developing the large viewing angle tabletop light field 3D display, the authors also report a light field capture model. Unlike the traditional rectangular plenoptic maps, this model features a parallelogram shape, with inclined lines representing the parallax images captured by the cameras. The capture model serves as theoretical guidance for 3D rendering technology based on backward ray-tracing.

 

The authors built a prototype of the tabletop light field 3D display, as shown in Fig. 2. The prototype offers a radial 3D viewing angle range of −34.4° to 34.3°, resulting in a total radial 3D viewing angle of 68.7°.

 

To quantitatively demonstrate 3D display performance at large viewing angles, the authors reproduced the USAF-1951 resolution test chart using their display prototype. As shown in Fig. 3, the 3D resolution almost remains consistent as the circumferential angle increases under the same radial viewing position. This indicates that the 3D resolution level remains stable, highlighting the display’s reliability and suitability for the use of requiring a large viewing angle.

 

# # # # # #

Qiong-Hua Wang is a professor at the School of Instrumentation and Optoelectronic Engineering, Beihang University. She is a Changjiang Scholar Distinguished Professor of the Ministry of Education, a recipient of National Science Fund for Distinguished Young Scholars, a leading talent in scientific and technological innovation of the National Ten Thousand Talents program. She is a fellow of Society for Information Display and OPTICA. Her research interests include display and imaging technologies.

 

Yan Xing is an associate professor at the School of Instrumentation and Optoelectronic Engineering, Beihang University. Her research interest is 3D display technology. She has proposed a light field capture and reproduction model for tabletop display, and has built an integral imaging glasses-free light field 3D display, and a tabletop glasses-free light field 3D display, etc. She is a PI of the Young Scientists Fund of the National Natural Science Foundation of China. She has authored more than 20 papers, which have been cited by SCI. She also holds more than 20 invention patents.

 

Lab of Display and Imaging at Beihang University was established in September 2018. Prof. Qiong-Hua Wang is the director of the lab. The research directions include 3D display technology, liquid crystal technology, liquid photonic devices and imaging technology. The lab is now undertaking National Key R&D Program of China, National Major Scientific Instrument and Equipment Development Project, and Major International (Regional) Joint Research Projects of NSFC. The lab has independently or cooperated with Sichuan University to develop the glasses-free integral imaging light field 3D display, glasses-free autostereoscopic 3D displays, 2D/3D compatible display, 3D camera, 3D image video processing software, holographic 3D display system, electro-wetting liquid lens, continuous optical zoom microscope, liquid crystal lens arrays, etc. Besides, the lab has obtained innovative achievements in two-dimensional liquid crystal material, liquid crystal light field modulation and blue phase liquid crystal, etc. Lab homepage: http://idlab.buaa.edu.cn/

# # # # # #

Opto-Electronic Advances (OEA) is a high-impact, open access, peer reviewed monthly SCI journal with an impact factor of 8.933 (Journal Citation Reports for IF2021). Since its launch in March 2018, OEA has been indexed in SCI, EI, DOAJ, Scopus, CA and ICI databases over the time and expanded its Editorial Board to 36 members from 17 countries and regions (average h-index 49).

The journal is published by The Institute of Optics and Electronics, Chinese Academy of Sciences, aiming at providing a platform for researchers, academicians, professionals, practitioners, and students to impart and share knowledge in the form of high quality empirical and theoretical research papers covering the topics of optics, photonics and optoelectronics.

# # # # # #

 

More information: http://www.oejournal.org/oea

Editorial Board: http://www.oejournal.org/oea/editorialboard/list

All issues available in the online archive (http://www.oejournal.org/oea/archive).

Submissions to OEA may be made using ScholarOne (https://mc03.manuscriptcentral.com/oea).

ISSN: 2096-4579

CN: 51-1781/TN

Contact Us: [email protected]

Twitter: @OptoElectronAdv (https://twitter.com/OptoElectronAdv?lang=en)

WeChat: OE_Journal

# # # # # #

Xing Y, Lin XY, Zhang LB, Xia YP, Zhang HL et al. Integral imaging-based tabletop light field 3D display with large viewing angle. Opto-Electron Adv 6, 220178 (2023). doi: 10.29026/oea.2023.220178 

# # # # # #



Journal

Opto-Electronic Advances

DOI

10.29026/oea.2023.220178

Share12Tweet8Share2ShareShareShare2

Related Posts

Colusa National Wildlife Refuge

Knowledge coproduction: Working together to solve a complex conservation problem

June 6, 2023
Manipulating topological edge states for optical channel switcher.

Revolutionizing optical control with topological edge states

June 6, 2023

Researchers dig deep to unveil causes of decline for North America’s smallest falcon

June 6, 2023

Does multimorbidity impact chronic disease treatment?

June 6, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    41 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Knowledge coproduction: Working together to solve a complex conservation problem

Revolutionizing optical control with topological edge states

Researchers dig deep to unveil causes of decline for North America’s smallest falcon

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In