• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A Braf kinase-inactive mutant induces lung adenocarcinoma

Bioengineer by Bioengineer
August 2, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The initiating oncogenic event in almost half of human lung adenocarcinomas is still unknown, a fact that complicates the development of selective targeted therapies. Yet these tumours harbour a number of alterations without obvious oncogenic function including BRAF-inactivating mutations. Researchers at the Spanish National Cancer Research Centre (CNIO) have demonstrated that the expression of an endogenous Braf (D631A) kinase-inactive isoform in mice (corresponding to the human BRAF(D594A) mutation) triggers lung adenocarcinoma in vivo, indicating that BRAF-inactivating mutations are initiating events in lung oncogenesis. The paper, published in Nature, indicates that the signal intensity of the MAPK pathway is a critical determinant not only in tumour development, but also in dictating the nature of the cancer-initiating cell and ultimately the resulting tumour phenotype.

The RAS-MAPK signalling cascade serves as a central node in transducing signals from membrane receptors to the nucleus. This pathway is aberrantly activated in a substantial fraction of human cancers. There is also abundant evidence that elevated RAS-MAPK signalling results in cellular toxicity that may serve as a natural barrier to cancer progression early in tumorigenesis. These findings suggest that defined thresholds of RAS-MAPK activity are required for homeostasis as well as for malignant transformation, but compelling genetic evidence is missing.

Mutational analysis of different human cancers has recently uncovered that among the BRAF – a component of the RAS-MAP kinase pathway- hot spots in lung adenocarcinoma, those resulting in inactivating mutations predominate over the V600E activating substitution, the main oncogenic form in other tumours such as melanoma. However, the contribution of BRAF-inactive mutants to lung cancer progression is unclear.

Using public databases, researchers have identified inactivating BRAF mutations in a subset of KRAS-driven human lung tumours. Subsequently, using mouse models, researchers have replicated these observations showing that the co-expression of oncogenic Kras and inactive Braf markedly enhances the onset of lung adenocarcinoma. Also, this combination accelerates tumour progression when the inactivating Braf mutation is genetically induced in advanced tumors. Surprisingly, in this same study it has been shown that, individually, the inactivating mutations of Braf are also oncogenic events that induce the appearance of lung adenocarcinoma.

The paper provides the first genetic evidence demonstrating that a kinase-inactivating Braf mutation induces lung adenocarcinoma development. Moreover, results suggest that lung adenocarcinoma patients with hypoactive BRAF could benefit from therapies based on selective CRAF inhibitors.

###

Media Contact

Nuria Noriega
[email protected]
34-917-328-000
@CNIO_Cancer

Inicio

http://dx.doi.org/10.1038/nature23297

Share12Tweet7Share2ShareShareShare1

Related Posts

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HIRAID Framework Enhances Nurse and Patient Outcomes

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.