• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A boundary dance of amyloid-β stepping into dementia

Bioengineer by Bioengineer
December 28, 2018
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Formation mechanism of the causative substances of Alzheimer’s disease revealed by molecular dynamics simulations and NMR experiments

Credit: ExCELLS/IMS

Many proteins aggregate at higher concentrations and form spherical substances called oligomers and acicular substances called amyloid fibrils. These protein aggregates cause more than 30 kinds of diseases, for example, Alzheimer’s disease is thought to be caused by the oligomers and amyloid fibrils formed by aggregation of amyloid-β (Aβ) peptides. It is known that aggregation of Aβ peptide is accelerated at a hydrophilic/hydrophobic interface such as a cell membrane surface. However, why the Aβ peptides tend to aggregate on the surface has not yet been well understood.

The research group at Exploratory Research Center on Life and Living Systems and Institute for Molecular Science, Japan worked on this problem using molecular dynamics simulations and nuclear magnetic resonance spectroscopy experiments. They found that the Aβ peptides tend to gather at the hydrophilic/hydrophobic interface. That is, the local concentration of Aβ at the interface is higher than that in bulk water solution. In addition, β-hairpin structures are formed more at the interface than in the bulk water solution. In the β-hairpin structure, as shown in the figure, a part of the Aβ peptide extends straight and forms intramolecular hydrogen bonds. Therefore, another Aβ peptide that comes close to this peptide is easy to make intermolecular hydrogen bonds and tends to aggregate. In this way, the research group clarified that the reason for accelerating the aggregation of the Aβ peptides on the cell membrane surface is that not only the Aβ peptide tends to have high concentration on the cell membrane surface but also it takes a structure that tends to bind to each other.

This discovery enables us to elucidate the mechanism by which the Aβ peptide aggregates on the membrane surface of nerve cells. Elucidating this mechanism will be applied to developing inhibitors against the causative substances of Alzheimer’s disease in the future.

###

Media Contact
Hisashi Okumura
[email protected]
81-564-557-277

Related Journal Article

http://dx.doi.org/10.1021/acs.jpcb.8b11609

Tags: BiochemistryBiomechanics/BiophysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025

Root N-Hydroxypipecolic Acid Circuit Boosts Arabidopsis Immunity

July 26, 2025

Single-Cell Screens Reveal Ebola Infection Regulators

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    48 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.