• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A better model for neutrophil-related diseases

Bioengineer by Bioengineer
June 2, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Etienne Meylan, EPFL


As the COVID-19 pandemic continues to spread, researchers are turning their attention to the virus’ biology, mechanism of action, and possible treatments. One of the targets are a group of immune cells called “neutrophils”, which have been reported to infiltrate the respiratory tract of patients who have died from COVID-19.

The idea is that in their attempt to attack the virus, neutrophils might be making the disease’s symptoms even worse by invading the lungs and exacerbating inflammation there. In order to find out if this is actually the case, scientists may use a mouse model whose neutrophils they deplete with “anti-neutrophil” antibodies.

The approach is used widely for studying neutrophils in a number of different conditions, including autoimmune diseases, chronic infection or inflammation, wound healing, and even some types of cancer. However, the neutrophil-depletion model is only partially effective, lacks specificity, and doesn’t last long enough.

Now, scientists led by Etienne Meylan at EPFL, have identified the source of the problem and have developed an alternative model that addresses its shortcomings. The work is published in Nature Communications.

By attempting to deplete neutrophils in mice, the animals’ bone marrow produces new neutrophils – which defeats the model’s entire purpose. The researchers have now identified these neutrophils, and determined that the reason they survive is because they have a lower chance of being targeted by the antibodies.

To address this, the scientists have developed a double antibody depletion strategy that enhances neutrophil elimination. The method increases the killing rate of the antibodies, resulting in a profound, specific and long-lasting reduction in neutrophil numbers in blood and tissues.

“Our study could be useful to address the functional importance of neutrophils in acute or chronic infection, in inflammation or in cancer,” says Meylan. “In particular, transgenic mouse models of SARS-CoV-2 infection coupled to our standardized neutrophil depletion strategies may help establish a causal link between this innate immune cell type and COVID-19.”

###

Other contributors

Lausanne University Hospital (CHUV)

Swiss Cancer Center Léman

INSERM, France

Massachusetts General Hospital Research Institute

University Duisburg-Essen

Reference

Gael Boivin, Julien Faget, Pierre-Benoit Ancey, Aspasia Gkasti, Julie Mussard, Camilla Engblom, Christina Pfirschke, Caroline Contat, Justine Pascual, Jessica Vazquez, Nathalie Bendriss-Vermare, Christophe Caux, Marie-Catherine Vozenin, Mikael J. Pittet, Matthias Gunzer, Etienne Meylan. Durable and controlled depletion of neutrophils in mice. Nature Communications 02 June 2020. DOI: 10.1038/s41467-020-16596-9

Media Contact
Nik Papageorgiou
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-16596-9

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyImmunology/Allergies/AsthmaMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Memory Through Targeted Training Techniques

September 8, 2025

Chitosan-Enhanced Therapy Reduces Epidural Scar Adhesions

September 8, 2025

Skin Carotenoids Linked to Health and Lifestyle in Youth

September 8, 2025

Impact of Chronic Pain on Daily Living in Seniors

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NADIM ADJUVANT Trial Highlights Advantages of Chemo-Immunotherapy After Surgery in Stage IB–IIIA NSCLC

Enhancing Memory Through Targeted Training Techniques

Chitosan-Enhanced Therapy Reduces Epidural Scar Adhesions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.