• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Keeping your synapses sharp: How spermidine reverses age-related memory decline

Bioengineer by Bioengineer
October 3, 2016
in Neuroscience
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Synapses, connecting the neurons in our brains, continuously encode new memories, but the ability to form new memories (“learning”) diminishes drastically for many of us as we get older.

Electron micrographs revealed the alignment of the plasma membrane, with evident increase in extracellular spacing between cellular elements, to be affected in 30d w1118 flies, when compared to 3d or 30dSpd w1118 flies. Credit: Gupta VK, Pech U, Bhukel A, Fulterer A, Ender A, Mauermann SF, et al.; Creative Commons Attribution License
Electron micrographs revealed the alignment of the plasma membrane, with evident increase in extracellular spacing between cellular elements, to be affected in 30d w1118 flies, when compared to 3d or 30dSpd w1118 flies.
Credit: Gupta VK, Pech U, Bhukel A, Fulterer A, Ender A, Mauermann SF, et al.; Creative Commons Attribution License

In an article published September 29 in open-access journal PLOS Biology, work by the groups of Stephan Sigrist from the Freie Universität Berlin, Andrea Fiala (Universität Göttingen) and Frank Madeo (Universität Graz) now shows that specific changes at the level of synapses directly provoke age-related dementia, and that, however, administering a simple substance already found in our bodies, spermidine, can help to avoid such age-related synaptic changes and thereby protect from age-induced memory impairment.

Just like humans, the fruit fly Drosophila melanogaster — a leading model for aging research — suffers from memory impairment with advancing age. The same team of researchers previously observed that Drosophila exhibits an age-induced decline in levels of spermidine, and that these memory deficits can be suppressed by feeding with a diet supplemented by spermidine. They now describe an unexpected scenario that convincingly explains the suppression of memory deficits by spermidine feeding.

In a nutshell, synapses within the Drosophila brain seem to narrow their operational space, and thus become increasingly unable to form new memories with age. Dietary supplementation with spermidine, however, prevented these changes. Importantly, when the authors mimicked these age-associated changes by genetic means, learning suffered even in young flies, providing a causal link between generic synaptic mechanisms and age-induced memory impairment. This work promises to open up a new avenue when searching for new therapeutic strategies to fight age-associated dementia, a major health threat of our times.

Web Source: PLOS Biology.

Journal Reference:

Varun K. Gupta, Ulrike Pech, Anuradha Bhukel, Andreas Fulterer, Anatoli Ender, Stephan F. Mauermann, Till F. M. Andlauer, Emmanuel Antwi-Adjei, Christine Beuschel, Kerstin Thriene, Marta Maglione, Christine Quentin, René Bushow, Martin Schwärzel, Thorsten Mielke, Frank Madeo, Joern Dengjel, André Fiala, Stephan J. Sigrist. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release. PLOS Biology, 2016; 14 (9): e1002563 DOI: 10.1371/journal.pbio.1002563

The post Keeping your synapses sharp: How spermidine reverses age-related memory decline appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    54 shares
    Share 22 Tweet 14
  • Predicting Colorectal Cancer Using Lifestyle Factors

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Debating Microplastics in Blood: New Analysis Sparks Discussion

Psychedelics and Non-Hallucinogenic Analogs Activate the Same Receptor—But Only to a Certain Extent

Urinary Tract Cancer Trends in Golestan Revealed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.