• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Better security achieved with randomly generating biological encryption keys

Bioengineer by Bioengineer
December 19, 2018
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jennifer M. McCann / Penn State MRI


Data breaches, hacked systems and hostage malware are frequently topics of evening news casts — including stories of department store, hospital, government and bank data leaking into unsavory hands — but now a team of engineers has an encryption key approach that is unclonable and not reverse-engineerable, protecting information even as computers become faster and nimbler.

“Currently, encryption is done with mathematical algorithms that are called one-way functions,” said Saptarshi Das, assistant professor of engineering science and mechanics, Penn State. “These are easy to create in one direction, but very difficult to do in the opposite direction.”

An example of this is multiplying two prime numbers. Assuming the original numbers are very large, reverse engineering from the result becomes very time and computer-resource heavy.

“However, now that computers are becoming more powerful and quantum computing is on the horizon, using encryption that relies on its effectiveness because it is monumentally time consuming to decrypt won’t fly anymore,” Das said.

Only truly random encryption keys are unclonable and not capable of being reverse-engineered because there is no pattern or formula in the process. Even so-called random number generators are really pseudo-random number generators.

“We need to go back to nature and identify real random things,” said Das. “Because there is no mathematical basis for many biological processes, no computer can unravel them.”

The researchers, who also included Akhil Dodda, graduate student in engineering science and mechanics; Akshay Wali, graduate student in electrical engineering; and Yang Wu, postdoctoral fellow in engineering science and mechanics, looked at human T cells. They photographed a random, 2-dimensional array of T cells in solution and then digitized the image by creating pixels on the image and making the T cell pixels “ones” and the empty spaces “zeros.”

“When we started there were a few papers out using nanomaterials,” said Dodda. “However, they weather (nanomaterials) out of the material and are stationary.”

Living cells, regardless of the type, can be kept around for a long time and because they move constantly, can be photographed repeatedly to create new encryption keys.

“We need a lot of keys because the population of the world is 7 billion,” said Das. “Each person will generate a megabyte of data every second by 2020.”

Besides encryption keys for personal computers, the keys are also needed for medical, financial and business data, and much more. If something is hacked or malfunctions, this method would also allow rapid replacement of the encryption key.

“It is very difficult to reverse-engineer these systems,” said Dodda. “Not being able to reverse-engineer these keys is an area of strength.”

The researchers are currently using 2,000 T cells per encryption key. The team reports in a recent issue of Advanced Theory and Simulations that even if someone knows the key generation mechanism, including cell type, cell density, key generation rate and key sampling instance, it is impossible for anyone to breach the system. It is simply not possible from that information to bust the encryption.

“We need something secure, and biological species-encrypted security systems will keep our data safe and secure everywhere and anytime,” said Wali.

###

Other Penn State researchers working on this project include Andrew Pannone, undergraduate in engineering science and mechanics; Sahin Kaya Ozdemir, associate professor of engineering science and mechanics; and Ibrahim Ozbolat, associate professor of engineering science and mechanics.

Also working on the project were Arnab Raha, Microarchitecture Research Laboratory, Intel Labs; and Likhith Kumar Reddy, undergraduate at Amrita Vishwa Vidyapeetham, Kerala, India, who was an undergraduate researcher at Penn State.

The researchers have applied for a provisional patent on this work.

Media Contact
A’ndrea Elyse Messer
[email protected]
814-865-9481

Related Journal Article

http://dx.doi.org/10.1002/adts.201800154

Tags: BiologyCell BiologyComputer ScienceSystem Security/HackersTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Tofu Whey Aquaforte Reduces Inflammation in Skin Cells

Tofu Whey Aquaforte Reduces Inflammation in Skin Cells

September 6, 2025
blank

Enhancing TCGA Cancer Research with Multi-Omics Integration

September 6, 2025

Guide to Genome Sequencing in Non-Model Organisms

September 6, 2025

Giant Gourami: Insights on Gonadal Development and Maturity

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tofu Whey Aquaforte Reduces Inflammation in Skin Cells

Overcoming Challenges in Pressure Injury Management Guidelines

Sexual Dimorphism in UGT Deficiency: New Insights Revealed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.