• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The role of lipid nanoparticles and its surface modification in reaching the brain

Bioengineer by Bioengineer
December 16, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018

Nanomedicine refers to field of science that uses nanotechnology for clinical operations. The use of nanoparticles (NPs) has specially been successful due to their structure. For example, NPs have the ability to cross biological barriers which boosts their effectiveness towards complicated drug delivery problems. This permeability allows NPs to reach biological targets such as brain cells, which would have been impossible by conventional drugs. Due to their effectiveness in this area, NPs have now been prioritized from simply being experimental tests compounds to be used as a workable solution for neurodegenerative disease (ND). NDs, such as Alzheimer’s disease and Parkinson’s disease are usually correlated with neuronal death, or in other words, the continuous structural and functional neuronal loss.

In common ND treatment strategies, one of the hardest obstruction to overcome is low penetration of the drug through the central nervous system (CNS). One of the reasons for this problem is the Blood Brain Barrier (BBB) and Blood Cerebrospinal Fluid Barrier (BCSFB) which protect the brain from invading and unwanted substances. The barriers carry out their function with the help of multispecific transport proteins and detoxifying enzymes. Using nanoparticles opens up many possibilities to counter such obstacles in the NDs treatment as they are proven to effectively deliver drugs to the CNS. The research focuses on the modification of lipid nanoparticles for brain targeting to increase drug efficiency and ability to deliver different kinds of drugs.

In conclusion, it has been difficult to establish which lipid nanoparticle, based on previous tests, was best for ND treatment since the administration route or animal models for each test were different. For the time being, researchers suggest that additional studies and tests are needed to propel research on CNS based drug delivery towards successful brain cell targeting.

###

This article is Open Access. To obtain the article please visit http://www.eurekaselect.com/162033

Media Contact
Faizan ul Haq
[email protected]
http://dx.doi.org/10.2174/1567201815666180510103747

Tags: BiochemistryMedicine/HealthNeurochemistryParkinsonPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.