• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Cocaine accumulation in fish eyes

Bioengineer by Bioengineer
September 29, 2016
in Neuroscience
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study by Eawag and Zurich University researchers using a new imaging method has revealed that, surprisingly, cocaine accumulates in the eyes of zebrafish. The findings indicate that chemicals — especially psychoactive drugs — need to be assessed quite differently with waterborne exposure than, for example, when pharmaceutical substances are tested in mice. In particular, the uptake mechanisms and effects of cocaine in fish cannot simply be transferred to mammals or humans.

Cocaine distribution in five-day-old zebrafish larvae exposed to 50 µM cocaine for eight hours. A) Optical image of stained coronal tissue section, B) overlay of A with MALDI image. C) and D) Saggital section of head with eye (bottom right). In the MALDI images, blue = low concentrations, yellow-red = high concentrations of cocaine. By far the highest concentrations were found in the eyes. Credit: Image courtesy of EAWAG: Swiss Federal Institute of Aquatic Science and Technology
Cocaine distribution in five-day-old zebrafish larvae exposed to 50 µM cocaine for eight hours. A) Optical image of stained coronal tissue section, B) overlay of A with MALDI image. C) and D) Saggital section of head with eye (bottom right). In the MALDI images, blue = low concentrations, yellow-red = high concentrations of cocaine. By far the highest concentrations were found in the eyes.
Credit: Image courtesy of EAWAG: Swiss Federal Institute of Aquatic Science and Technology

Zebrafish larvae a few days old are frequently used in toxicology tests — e.g. to study the behavioural effects of drugs — in order to avoid experiments in mammals. Taking the example of cocaine, researchers at Eawag, together with colleagues at Zurich University, have now shown that the uptake and distribution patterns and the effects of the drug in zebrafish differ in many ways from those in mammals. In their study, a complex imaging method (MALDI MSI[i]) was used for the first time to determine where cocaine accumulates in zebrafish. After being exposed to a defined concentration of the drug for eight hours, the larvae were euthanized and frozen. Tissue samples a few micrometres thick were then imaged by laser scanning.

The images show that the greatest accumulation of cocaine is to be found, not in the brain, but in the eyes, where concentrations over 1500 mg/kg were measured — compared to around 300-400 mg/kg in the trunk and brain. This finding is striking: while increased concentrations have been observed in the head region in other fish studies, the highest concentrations were assumed (without more precise measurements) to occur in the brain. In addition, compared to mammals, these levels are very high: in mice, concentrations 100 times lower are generally lethal, and in humans, 1000 times lower. Environmental toxicologist Kristin Schirmer, who co-led the project with Thomas Kraemer of the Zurich Institute of Forensic Medicine, cannot yet fully explain their findings. It is, however, clear that cocaine is taken up rapidly and continuously by zebrafish larvae, which at this early stage have not yet a fully developed blood-brain barrier.

Schirmer and her team found other major differences between the fish tests and the patterns observed in mammals: while cocaine has a stimulatory action and causes hyperactivity in mammals, it suppresses locomotor activity in zebrafish. The effects of cocaine on peripheral nerves — due to rapid uptake through the skin and gills — thus appear to override any potential effects on the brain. In contrast to mammals, the elimination process is delayed as a result of the accumulation of cocaine in zebrafish eyes: 50% of the cocaine was eliminated after eight hours in clean water, and 30% still remained after 48 hours.

According to Kristin Schirmer, the study shows that fish tests need to be further refined if the results are to be transferable to mammals, or if they are to be used for water quality assessment: “If we want to have a better knowledge of the effects of such chemicals on the ecosystem, we need a more detailed understanding of the processes of uptake through water — they’re quite different from when drugs are inhaled or injected.”

[i] MALDI MSI = Matrix-assisted laser desorption ionization mass spectrometry imaging

Web Source: EAWAG: Swiss Federal Institute of Aquatic Science and Technology.

Journal Reference:

Krishna Tulasi Kirla, Ksenia J. Groh, Andrea E. Steuer, Michael Poetzsch, Rakesh Kumar Banote, Julita Stadnicka-Michalak, Rik I.L. Eggen, Kristin Schirmer, Thomas Kraemer. Zebrafish Larvae Are Insensitive to Stimulation by Cocaine: Importance of Exposure Route and Toxicokinetics. Toxicological Sciences, 2016; kfw156 DOI: 10.1093/toxsci/kfw156

The post Cocaine accumulation in fish eyes appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    54 shares
    Share 22 Tweet 14
  • Predicting Colorectal Cancer Using Lifestyle Factors

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AUX/LAX Transporters: Structure and Auxin Import Mechanism

Alzheimer’s Transcriptional Landscape Mapped in Human Microglia

Chip-Based Label-Free Incoherent Super-Resolution Microscopy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.