• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New strategy discovered toward possible prevention of cancers tied to mono

Bioengineer by Bioengineer
November 12, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Minnesota, the Howard Hughes Medical Institute, and the University of Toronto have discovered a possible path forward in preventing the development of cancers tied to two viruses, including the virus that causes infectious mononucleosis–more commonly known as mono or the "kissing disease"–that infects millions of people around the globe each year.

Published in Nature Microbiology, the research focuses on how the Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV) shield themselves from destruction inside the human body.

"People infected with EBV or KSHV will have the virus for life," said Adam Cheng, a Medical Scientist Training Program (MSTP) student at the University of Minnesota Medical School and lead author on the study. "In most cases, the virus will remain dormant. However, sometimes these viruses can reactivate and lead to abnormal, cancerous cell growth. But now, in the wake of our research, data suggests it may be possible to suppress the virus indefinitely."

Under ideal conditions, a human DNA enzyme called APOBEC3B is capable of mutating and killing EBV and KSHV as it invades and replicates inside the body. However, researchers discovered that both viruses are able to produce defense proteins–BORF2 and ORF61, respectively–that bind directly to the APOBEC3B enzyme. In doing so, APOBEC3B is unable to mutate and kill the viral DNA and is directed away from sites of virus replication.

"Our work suggests that by blocking the virus's defense proteins, it may be possible to treat mono and prevent the development of cancers caused by EBV and KSHV," said senior author Reuben Harris, Ph.D. "The viral defense proteins are excellent targets for drug development."

Researchers used CRISPR/Cas9-mediated genome engineering to delete the EBV's defense protein. Through that process, the human APOBEC3B enzyme was able to mutate the virus, rendering it harmless and unable to replicate in cells.

"We are already working hard to extend these results from cells to mice and other complex organisms," said Harris. "The preliminary data are very promising and we hope to make great strides in future studies."

"This is a great example of how an unbiased basic science experiment can lead to novel therapeutic opportunities. We could not have anticipated such an unusual role of BORF2 in disabling APOBEC3B and protecting EBV genomes," said Lori Frappier, Ph.D., senior author on the study and professor at the University of Toronto.

###

Cheng and Harris are affiliated with the following University of Minnesota colleges and units: College of Biological Sciences's Department of Biochemistry, Molecular Biology and Biophysics; the Masonic Cancer Center; the Institute for Molecular Virology in the School of Dentistry; and the Center for Genome Engineering. Harris is also an investigator with the Howard Hughes Medical Institute.

Funding for this research was provided by the Howard Hughes Medical Institute, the National Cancer Institute and the Canadian Institutes for Health Research.

Media Contact

University of Minnesota Public Relations
[email protected]
612-624-5551
@UMNews

http://www.umn.edu

https://twin-cities.umn.edu/news-events/research-brief-new-strategy-discovered-toward-possible-prevention-cancers-tied-mono

Related Journal Article

http://dx.doi.org/10.1038/s41564-018-0284-6

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Unveiling Tulip Sign in Prenatal Hypospadias Detection

August 19, 2025
Breaking the Blood–Brain Barrier in Pediatric CNS Tumors

Breaking the Blood–Brain Barrier in Pediatric CNS Tumors

August 19, 2025

Cadonilimab Shows Promise in Advanced Gynecological Cancers

August 19, 2025

Nerolidol and Cyclophosphamide Combat Breast Cancer Cells

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optical Tweezers Probe Whey-Chitosan Emulsion Stability

Varroa destructor: Honey Bee Parasite and Management Strategies

Assessing the FAST Walk System for Enhancing Gait Recovery in Chronic Stroke Patients Through Neuromodulation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.