• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

How melanoma evades targeted therapies

Bioengineer by Bioengineer
November 6, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(PHILADELPHIA) – Melanoma is the leading cause of death from skin cancer. Many patients develop metastatic disease that spreads to other parts of the body. One commonly used targeted therapy for metastatic melanomas works by attacking melanomas with mutations in the BRAF gene that make them susceptible to RAF-inhibiting drugs. However, many cancers quickly become resistant to the treatment. Now researchers at the NCI-designated Sidney Kimmel Cancer Center – Jefferson Health have discovered how one of the mechanisms of that resistance works, a finding that could lead to designing more effective combination therapies.

"The findings give us new clues about how we might combat resistance to this targeted melanoma therapy," said Andrew Aplin, PhD, Associate Director for Basic Research and the Program Leader for Cancer Cell Biology and Signaling (CCBS) at the Sidney Kimmel Cancer Center. The research was published November 6th in Cell Reports.

About 13-30 percent of melanomas become resistant to RAF-inhibiting drugs because of a difference in how those cells produce and process the BRAF protein. The gene these patients carry is called a BRAF V600E isoform. These RAF-resistant isoform cancers produce BRAF proteins that become active complexes with another cancer-promoting protein called MEK.

Dr. Aplin, together with first author Michael Vido, an MD/PHD student in Dr. Aplin's lab and colleagues, showed that when they blocked this complex, or dimerization, by targeting a specific site on the BRAF isoform, they could block MEK binding and restore the potency of the RAF-inhibitor.

"The work helps explain dual hypotheses for RAF-inhibitor resistance, one which focused on MEK and the other on dimerization," said Dr. Aplin. "This work weaves the two together mechanistically. The results may also help guide the design of better combination therapies for melanoma."

"This pivotal study is part of a much larger effort within the Sidney Kimmel Cancer Center at Jefferson to advance the pace of discoveries leading to clinical translation," said Karen Knudsen, PhD, Enterprise Director of the Sidney Kimmel Cancer Center. "Dr. Aplin's findings bring critical insight into the molecular underpinnings of therapeutic resistance, and nominate new possibilities for treating advanced disease."

###

This work was funded by grants from the NIH with the following grant numbers: F30-CA203314, K99-CA207855, and R01-CA182635. Support was also provided by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. Core facilities and resources were funded through the Sidney Kimmel Cancer Center NCI Support Grant, P30-CA56036. The authors report no conflicts of interest relevant to this work.

Article reference: Michael J. Vido, Kaitlyn Le, Edward J. Hartsough, and Andrew E. Aplin, "BRAF splice variant resistance to RAF inhibitor requires enhanced MEK association," Cell Reports,https://www.cell.com/cell-reports/fulltext/S2211-1247(18)31638-3 DOI: 10.1016/j.celrep.2018.10.049, 2018.

Media Contact: Edyta Zielinska, [email protected], 215-955-7359.

Media Contact

Edyta Zielinska
[email protected]
215-955-7359
@JeffersonUniv

http://www.jefferson.edu/

http://dx.doi.org/10.1016/j.celrep.2018.10.049

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Tulip Sign in Prenatal Hypospadias Detection

August 19, 2025
Breaking the Blood–Brain Barrier in Pediatric CNS Tumors

Breaking the Blood–Brain Barrier in Pediatric CNS Tumors

August 19, 2025

Cadonilimab Shows Promise in Advanced Gynecological Cancers

August 19, 2025

Nerolidol and Cyclophosphamide Combat Breast Cancer Cells

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Single-Cell Map Tracks Arabidopsis Life Cycle

Electrically Pumped Surface-Emitting Emission from Quantum Dots

Unraveling GFPT’s Metabolic Role in Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.