• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New NYU Abu Dhabi research suggests corals produce molecules that can help resist disease

Bioengineer by Bioengineer
November 5, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Courtesy of Dr. Alexandray Mystikou and Prof. Shady Amin.

Fast facts:

  • Recent research shows that corals' resistance to disease depends on their ability to maintain healthy surface microbiomes, a community of microorganisms, such as bacteria and fungi.
  • Much like how our health is linked to maintaining a healthy gut microbiome, corals also resist disease by maintaining a healthy surface microbiome.
  • This study shows that corals can control their surroundings by producing unique molecules that can help recruit healthy microbiomes and fight parasitic microbes.
  • The study results have been published in Communications Biology.
  • Researchers used water sampling in 18 coral colonies along the Abu Dhabi coast; each colony was sampled at different distances from the coral surface.

Abu Dhabi, November 5, 2018:

Corals' resistance to disease is highly dependent on their ability to maintain healthy surface microbiomes, a community of microorganisms, such as bacteria and fungi. For several years, it has been shown that corals harbor unique microbes at their surfaces, but the mechanisms of how this community is recruited and maintained were not known. In a new study published in Communications Biology, NYU Abu Dhabi Assistant Professor of Biology Shady Amin, along with Philippe Schmitt-Kopplin from the Helmholtz Center Munich, report that corals, though they are stationary organisms, can alter their surroundings by producing unique molecules that can help recruit healthy microbiomes and fight parasitic microbes.

Much like how our health is linked to maintaining a healthy gut microbiome, corals also resist disease by maintaining a healthy surface microbiome. The paper reports for the first time that corals are surrounded by a cloud of molecules that form concentration gradients around coral colonies and help structure microbial communities, also known as surface microbiomes, residing on coral surfaces. The implications of these findings are far reaching as these microbial communities are strongly linked to whether corals around the world are healthy or are infected by disease.

Using water samples from 18 coral colonies along the Abu Dhabi coast, each of which was sampled at different distances from the coral surface, the study's researchers have discovered that Acropora and Platygyra corals harbor unique bacteria and molecules at their surface, distinctly different from surrounding seawater. These molecules were identified as chemo-attractants, antibacterials, or signaling molecules, suggesting they may structure coral surface-associated microbes. Their findings show that there is a distinct gradient of molecules surrounding corals, and that these molecules may help recruit beneficial bacteria and/or defend against parasitic bacteria.

Furthermore, the researchers have detected surface associated molecules characteristic of healthy or white-syndrome disease infected corals, a finding which may aid in predicting the onset of disease.

"This is the first glimpse we have of what corals do in their immediate surroundings to adapt to their environment. If we understand the types of molecules corals need to maintain a healthy surface microbiome, we may be able to predict when diseases and bleaching occur and perhaps even prevent them," said Amin.

###

About NYU Abu Dhabi

NYU Abu Dhabi is the first comprehensive liberal arts and science campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly-selective liberal arts, engineering and science curriculum with a world center for advanced research and scholarship enabling its students to succeed in an increasingly interdependent world and advance cooperation and progress on humanity's shared challenges. NYU Abu Dhabi's high-achieving students have come from 120 nations and speak over 120 languages. Together, NYU's campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.

Media Contact

Adam Pockriss
[email protected]
917-596-5951
@nyuniversity

https://www.nyu.edu/about/news-publications/news.h

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.