• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Imaging collaboration sheds new light on cancer growth

Bioengineer by Bioengineer
October 29, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Walter and Eliza Hall Institute

Walter and Eliza Hall Institute researchers have uncovered new insights into how the normal controls on cell growth are lost in cancer cells, leading to rapid tumour expansion.

The findings could help researchers predict how cancer cells respond to chemotherapy and improve our understanding of how cancer evolves.

Published in the journal Cell Cycle, the research was led by Dr Kim Pham and Professor Phil Hodgkin and performed in collaboration with Dr Kelly Rogers and Dr Lachlan Whitehead at the Institute's Centre for Dynamic Imaging.

At a glance

  • Researchers have discovered how the process of cell replication is derailed in cancer cells, challenging a longstanding theory about how cells grow.
  • The discovery was made using advanced imaging techniques and allowed researchers to develop a new mathematical model of cell replication.
  • Accurate models of cell replication help researchers predict how cancers respond to chemotherapy and how drug resistance evolves.

Debunking cell cycle dogma

Cell replication is a normal process that generates additional cells, enabling the body to grow, repair tissues and generate germ-fighting immune cells.

In order to replicate, a cell first copies its genetic material, DNA, and then physically splits in half to form two new 'daughter' cells. This process, called the cell cycle, is normally tightly controlled to prevent excessive growth, which can lead to cancer.

In this study, researchers uncovered precisely how the cell cycle is derailed in cancer cells.

"We found that compared with healthy immune cells, cancer cells had dramatic changes in their cell cycle," Dr Pham said. "The first phase of the cell cycle, called G1, is normally tightly controlled to ensure replication occurs safely. This step is drastically shortened in cancer cells, allowing them to race through the cell cycle at a risky pace."

Since 1973, scientists have assumed that the second phase of the cell cycle, when DNA is copied and the cell splits in half, takes a fixed amount of time, while the first phase takes a variable amount of time.

Several years ago, the team challenged this theory in healthy immune cells, showing that both phases of the cell cycle contribute to changes in replication time. Now, they have upended the theory in cancer cells too.

"The old theory predicts that all variation in replication time comes from the first phase of the cell cycle. When we looked closely at the cancer cells, we found that the opposite was true: the bulk of the variation was due to the second phase of the cell cycle," Dr Pham said.

Imaging cells in unprecedented detail

The discovery was made in collaboration with the Centre for Dynamic Imaging, a laboratory within the Institute that offers researchers access to advanced imaging technologies.

"For this study, we tagged cancer cells with a fluorescent sensor that changes colour as cells progress through the cell cycle," Dr Pham said. "We then performed single cell imaging to track each phase of the cell cycle as they underwent replication," she said.

The researchers then worked with bioimage analyst Dr Whitehead to analyse and interpret their data and develop a new mathematical model for predicting when cells replicate.

"This study demonstrates the power of imaging to directly reveal cellular behaviours, and in some cases challenge assumptions that were made before it was possible to obtain such clear evidence," Dr Whitehead said.

Fresh insights into cancer

Professor Hodgkin said the research could impact on our understanding of cancer.

"Accurate mathematical models of how cancer cells replicate help us predict how cancers respond to chemotherapy treatment, and how they evolve to become drug resistant." The team's finding that the first phase of the cell cycle is minimised in cancer cells suggests a vulnerability that could be targeted by cancer treatments.

"Cancers have often lost the safety checks that prevent replication in the presence of errors such as DNA damage. Our work suggests the lack of these safety checks leads to the first phase of the cell cycle becoming much shorter in cancer cells. Drugs that help restore these safety checks could be beneficial for treating multiple cancers," Professor Hodgkin said.

###

The research was supported by the National Health and Medical Research Council, Human Frontiers Science Program and the Australian Government.

Media Contact

Arunee Wilson
[email protected]
61-393-452-719
@WEHI_research

Home

Original Source

https://www.wehi.edu.au/news/imaging-collaboration-sheds-new-light-cancer-growth http://dx.doi.org/10.1080/15384101.2018.1511511

Share12Tweet8Share2ShareShareShare2

Related Posts

Nerolidol and Cyclophosphamide Combat Breast Cancer Cells

Nerolidol and Cyclophosphamide Combat Breast Cancer Cells

August 19, 2025
blank

Moffitt Study Uncovers Promising Combination Therapy for Drug-Resistant Melanoma

August 19, 2025

Updated Guidelines for Managing Aromatase Inhibitor-Induced Bone Loss in Hormone-Sensitive Breast Cancer Patients

August 19, 2025

University of Iowa Researchers Discover Promising New Target for Treating Rare, Aggressive Childhood Cancer

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nerolidol and Cyclophosphamide Combat Breast Cancer Cells

Hearing Aid Use Linked to Reduced Risk of Developing Dementia, Study Finds

Blood Biochemistry Reveals Post-Mortem Interval Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.