• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

How sleeping mammary stem cells are awakened in puberty

Bioengineer by Bioengineer
October 25, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Walter and Eliza Hall Institute, Australia

Walter and Eliza Hall Institute researchers have discovered how the growth of milk-producing mammary glands is triggered during puberty. Sleeping stem cells in the mammary gland are awoken by a protein dubbed FoxP1, according to the research that was published today in the journal Developmental Cell.

The research expands our knowledge of how the mammary gland – a component of the human breast – develops from stem cells, underpinning a better understanding of how defects in this process lead to breast cancer. The research was led by Dr Nai Yang Fu, Professor Jane Visvader and Professor Geoff Lindeman who is also a medical oncologist at the Royal Melbourne Hospital and the Peter MacCallum Cancer Centre, in collaboration with Professor Gordon Smyth and his bioinformatics team.

AT A GLANCE

  • Stem cells – the cells that can give rise to a range of other cells types – are often found in a dormant state in our body, and little is known about how they are awakened into an activated state.
  • Our researchers discovered 'sleeping' mammary stem cells are awoken at puberty by a gene called FoxP1. This triggers the rapid growth and development of mammary glands.
  • Without FoxP1, the mammary stem cells are locked in a dormant state and mammary glands could not grow

WAKING UP STEM CELLS

Stem cells in the mammary gland exist in a largely dormant or 'sleeping' state throughout life. In puberty, these stem cells need to be 'woken up' to drive the rapid expansion of the mammary gland, said Professor Visvader.

"The mammary stem cells are ready for a signal to start dividing," she said. "We discovered that a gene called FoxP1 is an essential part of this signal in puberty and the adult."

FoxP1 switches off the production of other proteins within cells – by repressing their genes.

"We discovered that FoxP1 switches off the production of one of the key proteins that keep mammary stem cells asleep. As the level of this protein drops, the stem cells wake up and begin to divide, driving mammary gland growth," Dr Fu said.

THE IMPORTANCE OF TEAM WORK

The project relied on collaboration between scientists with diverse skills, said Professor Visvader.

"This project brought together expertise in cell biology, developmental biology, bioinformatics and imaging to solve the question of how mammary stem cells are awoken in puberty and adult breast tissue.

"We're still looking for the precise connections linking female hormones and FoxP1, but we are one step closer to understanding the detailed process of breast development. This is also helping us to connect faulty cells that contribute to breast development with the development of breast cancer," she said.

###

The research was supported by the Australian National Health and Medical Research Council, the Australian Cancer Research Foundation, Cure Cancer Australia, the National Breast Cancer Foundation, the Victorian Cancer Agency and the Victorian Government.

Media Contact

Vanessa Solomon
[email protected]
61-475-751-811
@WEHI_research

Home

Related Journal Article

http://dx.doi.org/10.1016/j.devcel.2018.10.001

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.