• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Genetic breakthrough by CU Denver scientists will aid whitebark pine conservation efforts

Bioengineer by Bioengineer
October 18, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Diane Tomback, Ph.D.

A University of Colorado Denver-led research team for the first time developed reliable genetic markers known as nuclear microsatellites for the whitebark pine, a discovery that could improve the tree's prospects for survival. Whitebark pine, which is declining rapidly nearly range-wide, is currently being considered for listing under the Endangered Species Act.

According to an article published today in PLOS ONE, the new genetic markers represent a useful and low-cost method for screening whitebark pine for levels of genetic variation, providing a tool with multiple applications for protecting the rapidly disappearing tree from going extinct. Prior attempts to find these markers for the whitebark pine failed due to the complexity and size of its genome, which is nearly nine times larger than the human genome.

"With this breakthrough, scientists can begin screening whitebark pines for disease resistance traits, for strategic seed collection and other conservation and climate change mitigation efforts," said Dr. Diana Tomback, a professor in the Department of Integrative Biology at CU Denver.

"Genetic screening using microsatellites is a fast, affordable tool that can help with research and restoration efforts for this special tree, which plays a significant ecological role in high-mountain ecosystems."

The imperiled high-altitude conifer ranges throughout the Western U.S. and Canada and is important for watershed protection and as food for wildlife, including Grizzly Bears. Threats to the whitebark pine include a non-native disease, mountain pine beetles, severe fire, as well as climate change.

CU Denver graduate student Marian Lea and Tomback led the research team that succeeded in developing 23 microsatellite markers for whitebark pine, including 10 that are newly developed and 13 that were transferred from other pine species.

Research team members: Dr. John Syring (Professor, Linfield College, OR), and Dr. Richard Cronn and Tara Jennings (U.S. Forest Service Pacific Northwest Research Station) initiated this work by applying genome sequencing methods to the whitebark pine genome and identifying over 1,000 candidate gene regions for analysis. Dr. Leo Bruederle and Dr. Jennifer Neale (Denver Botanic Garden) provided lab techniques that converted these regions into simple genetic assays. Lea, Syring, and Jennings performed detailed screening of the novel and transferred markers, and Lea completed the population analysis of two Yellowstone whitebark populations, which provided evidence that the markers were successful.

###

###

Media Contact

Meme Moore
[email protected]
303-315-0009
@CUDenver

http://www.ucdenver.edu/pages/ucdwelcomepage.aspx

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0205423

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Comparative Genomics of UK Mycoplasma pneumoniae (2016-2024)

October 9, 2025
Gymnocypris Przewalskii Juveniles Adapt to Saline-Alkaline Stress

Gymnocypris Przewalskii Juveniles Adapt to Saline-Alkaline Stress

October 9, 2025

New Global Study Reveals How Introduced Animals Alter Island Plant Dispersal

October 8, 2025

Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1146 shares
    Share 458 Tweet 286
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Self-Collected HPV Tests Match Clinician Samples for Cervical Cancer

Comparative Genomics of UK Mycoplasma pneumoniae (2016-2024)

SADS, SIDS, SUDEP: Connected Triad Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.