• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Forest carbon stocks have been overestimated for 50 years

Bioengineer by Bioengineer
October 16, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © CIRAD, G. Vieilledent

It may be a small correction, but it is far from negligible as far as forest ecologists and carbon cycle specialists are concerned. The error lay in a formula established almost 50 years ago (in 1971) for calculating basic wood density. Given that basic density is used to assess the amount of carbon stored in a tree, the fact that the formula had to be corrected meant that forest carbon stocks may have been overestimated by 4 to 5%. "This new formula should enable us to determine more accurately the role of forests in the carbon cycle and the impact of deforestation on climate change" , says Ghislain Vieilledent, an ecologist with CIRAD who was the corresponding author of the work published in the journal American Journal of Botany on 16 October.

For more than 70 years, CIRAD has had a database on 1300 wood species and almost 4500 trees. It was when they came to promote this resource that Ghislain Vieilledent and his colleagues at CIRAD and at Paul Sabatier University in Toulouse discovered an incoherence in a conversion factor: the one used to compute the basic density of a tree based on wood density at 12% moisture, which corresponds to the average wood moisture content in temperate regions. Since this technical characteristic is widely available in wood technology databases, ecologists only have to apply a conversion factor to it in order to establish the basic density of a tree species. However, it was precisely that conversion factor that did not tally with the researchers' new calculations. "To start with, I thought we had made a mistake in our calculations or that there was some uncertainty surrounding measurement of the relevant data. It was not easy to cast doubt on a formula that had been widely accepted for years and quoted in several scientific articles."

The researchers took a new look at the data in CIRAD's historic database in order to determine a new formula for establishing basic density based on density at 12%. The new conversion factor will be used to calculate the basic density of woods in forest ecology databases. In particular, it will serve to update the global wood density database on which Jérôme Chave and Fabian Fischer are working at CNRS-Paul Sabatier University in Toulouse, who were co-authors of the publication. The correction will make it possible to estimate carbon forest stocks more accurately and understand more clearly the role played by forests in climate regulation.

###

A database of 70-years' standing

Physical, mechanical, chemical, durability and processing properties, amongst other data… CIRAD measures the technological characteristics of tropical woods and inputs them into a database launched in the 1940s. This information on the intrinsic properties of tropical woods comes from several thousand tests and series of trials, and now includes data on more than 1250 tropical tree species. This priceless tool is currently updated and supplemented by Jean Gérard, a co-author of the publication, and his colleagues at CIRAD's BioWooEB research unit.

Media Contact

Ghislain Vieilledent
[email protected]
33-788-468-285

http://www.cirad.fr/

Original Source

https://www.cirad.fr/en/news/all-news-items/articles/2018/science/forest-carbon-stocks-overestimated http://dx.doi.org/10.1002/ajb2.1175

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.