• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Young innovators

Bioengineer by Bioengineer
October 15, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Joy Smoker

University of Delaware assistant professors Emily Day and Jason Gleghorn have been named Young Innovators of Cellular and Molecular Bioengineering for 2018.

Both have articles featured in this month's special issue of the journal Cellular and Molecular Bioengineering, which established the Young Innovators Award to highlight the research of outstanding assistant professors. Day and Gleghorn will also give invited talks in a session devoted to the award winners at the 2018 meeting of the Biomedical Engineering Society, to be held Oct. 17-23.

Each year, ten to 12 researchers internationally receive this award, and it's unusual to have two recipients from the same university and department.

"The University of Delaware's Department of Biomedical Engineering is full of talented researchers who are making major contributions to their fields," said Dawn Elliott, department chair and Blue and Gold Professor of Biomedical Engineering. "I am so proud that not one, but two of our faculty members were identified as Young Innovators this year."

Day is studying treatments designed to regulate the expression of the genes that drive cancer growth. Day's paper in the special issue of Cellular and Molecular Bioengineering reports on the development of layer-by-layer assembled nanoshells as vehicles to deliver miRNA, gene-regulating material, into cells. She demonstrates that these nanoparticles can deliver the tumor suppressor miR-34a into triple-negative breast cancer cells, which subsequently reduces the expression of the cancer-promoting genes SIRT1 and Bcl-2. The result? Fewer cancer cells.

Day and her team coated negatively charged nanoshells with alternating layers of positive poly-l-lysine (PLL), a synthetic material, and negative miRNA. The outer layer of PLL protects the miRNA and helps it enter the cell. Day then used a variety of techniques to determine the particles' ability to enter the target cells, inhibit expression of the desired genes, and reduce cell proliferation.

The nanoshells released?about?30 percent of their miR-34a cargo over five days and suppressed SIRT1 and Bcl-2 by 46 percent and 35 percent, respectively. They also decreased cell proliferation by 33 percent. Future studies that build upon this foundational work to develop nanoparticles that maximize intracellular miRNA delivery could ultimately result in very potent and noninvasive treatments for cancer.

Gleghorn's research centers on understanding how cells assemble into functional tissues to treat congenital birth defects and conditions associated with premature birth, maternal and fetal health, and pediatric diseases.

Gleghorn's paper in this special issue reveals that TRPV4, an ion channel identified in other tissues in the human body, may regulate the development and formation of new blood vessels and airways of fetal lungs in utero.

His lab created an experimental model to culture embryonic mouse lungs and used time-lapse imaging to capture active changes in lung biology and visualize the organization of airway, smooth muscle, and blood vessel compartments.

Gleghorn found that TRPV4 expression was related to airway branching, smooth muscle differentiation, and lung growth. When TRPV4 was elevated, smooth muscle contractions doubled in frequency, and when TRPV4 was reduced, smooth muscle contractions reduced by 60 percent, demonstrating a functional role consistent with smooth muscle differentiation. Activation of TRPV4 increased the vascular capillary density around the distal airways, and inhibition resulted in a near complete loss of the vasculature.

Gleghorn concluded that TRPV4 could be a mechanosensor involved in transducing mechanical forces on the airways, leading to molecular and transcriptional events that regulate the development, growth, and formation of the three essential tissue compartments in the lung.

These new findings may uncover new therapeutic targets for the improved treatment of bronchopulmonary dysplasia, a chronic lung disease and the leading cause of mortality and morbidity in premature babies.

###

Media Contact

Peter Kerwin
[email protected]
302-831-8749
@UDResearch

http://www.udel.edu

Original Source

https://www.udel.edu/udaily/2018/october/emily-day-jason-gleghorn-young-innovators/

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

METTL16 Links Ferroptosis to NSCLC TKI Resistance

August 18, 2025
TOPK Drives Immune Suppression in Kidney Cancer

TOPK Drives Immune Suppression in Kidney Cancer

August 18, 2025

4D Fetal Echocardiography: Insights on Brachiocephalic Vein Anomalies

August 18, 2025

Blocking c-Abl Halts Glioma Cell Growth

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Technology Developed to Precisely Control Pore Wall Crystallinity

Researchers Unleash Wireless Innovation to Transmit Vast Amounts of Data

Ultrasound Offers Targeted Drug Delivery with Reduced Side Effects

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.