• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New model mimics human tumors for accurate testing of cancer drugs

Bioengineer by Bioengineer
October 12, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The Walter and Eliza Hall Institute of Medical Research

Walter and Eliza Hall Institute researchers have genetically engineered a new laboratory model that enables accurate testing of anti-cancer drugs by mimicking the complexity of human cancers.

Using this advanced model, researchers will be able to discover the safest and most effective ways to use promising drugs called MCL-1 inhibitors in the clinic.

The work was led by PhD student Ms Margs Brennan, Dr Gemma Kelly and Associate Professor Marco Herold, and has been published in the journal Blood.

At a glance

  • Researchers have genetically engineered a laboratory model for testing the effectiveness of new anti-cancer drugs called MCL-1 inhibitors.
  • The model is the best available for preclinical testing of MCL-1 inhibitors and will help to identify the right patients for these drugs.
  • MCL-1 inhibitors work by targeting a protein essential for the sustained growth of many blood cancers, as well as solid tumours including breast cancers and melanoma.

Attacking cancer's Achilles' heel

MCL-1 is a protein essential for the sustained growth of many blood cancers, as well as some solid tumours including breast cancer and melanoma. Dr Kelly said this role in promoting cancer cell survival makes MCL-1 an attractive therapeutic target.

"MCL-1 allows cancer cells to evade the process of programmed cell death, or apoptosis, that normally removes damaged or unwanted cells from the body.

"Because so many cancer cells depend on MCL-1 for survival, it is like cancer's Achilles' heel – if we can attack this weak point with a drug, we may be able to successfully trigger apoptosis and destroy cancer cells for good," Dr Kelly said.

A highly potent inhibitor of MCL-1, called S63845, has been developed by pharmaceutical company Servier. While the drug is known to trigger cancer cell death in the laboratory, until now there was no accurate tool to predict how the drug would work in patients.

Rigorous testing for targeted clinical use

In this new study, researchers genetically engineered a model to accurately evaluate MCL-1 inhibitors. The model is the best available for laboratory-based studies evaluating S63845, closely predicting how cancer patients will respond to the drug in the clinic.

Ms Brennan said the laboratory model will allow researchers to find the best ways to match MCL-1 inhibitors with the right cancer patients.

"Using this model, we can get a handle on key questions such as which types of cancers are sensitive to MCL-1 inhibitors, which patients will benefit, which combination treatments will be most effective and the best dosing regimens to use.

"Working with laboratory models that closely mimic human cancer allows us to gain as much knowledge about MCL-1 inhibitors as we can before the drugs even reach the clinic. This lays the groundwork for future clinical trials, hopefully improving treatment options for patients," she said.

Powerful potential for treatments

To demonstrate the potential of this new research tool, the researchers used it to test whether MCL-1 inhibitors could effectively treat a preclinical model of lymphoma.

"We found that treatment with the MCL-1 inhibitor S63845 led to remission in six out of 10 cases of lymphoma," Associate Professor Herold said. "This was achieved without significant side effects, suggesting that S63845 will be safe and effective in the clinic."

Associate Professor Herold said MCL-1 inhibitors could be particularly powerful when combined with standard treatments like chemotherapy.

"MCL-1 allows cancer cells to resist treatments like chemotherapy that would otherwise trigger cell death. In our preclinical model, we found that combining an MCL-1 inhibitor with chemotherapy led to remission in almost all cases of lymphoma," he said.

The team is now using their laboratory model to test whether MCL-1 inhibitors are effective for other types of blood cancers. They will also share the model with other members of the scientific community studying MCL-1 inhibitors in different disease contexts.

"Our laboratory model will be invaluable for future preclinical work determining the best uses of MCL-1 inhibitors for treating human disease," Associate Professor Herold said.

###

This work was supported by the Australian National Health and Medical Research Council, Servier Laboratories, the Leukemia and Lymphoma Society of America, the Cancer Council of Victoria, the Victorian Cancer Agency, the Leukaemia Foundation, the Estate of Anthony (Toni) William Redstone OAM, the Craig Perkins Cancer Research Foundation, Mr Malcolm Broomhead, the Australian Government and the Victorian State Government.

Media Contact

Arunee Wilson
[email protected]
61-475-751-811
@WEHI_research

Home

Share12Tweet7Share2ShareShareShare1

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.