• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Increased cyto-adhesion of malaria parasites during fever uncovered

Bioengineer by Bioengineer
October 9, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: SUTD

Malaria is the most prevalent blood-borne infectious disease caused by parasites of the species Plasmodium. In 2016, more than 216 million malaria infections were reported resulting in 445,000 deaths across the developing world.

During the blood stage development, Plasmodium (P.) falciparum, the most common causative agent of malaria-associated pathology in humans, exports a number of parasitic proteins to the surface of infected red blood cells facilitating its cyto-adhesion to endothelial receptors. This adhesive behavior prevents splenic clearance and induces microvasculature obstruction, forming critical contributors towards the disease outcome.

In a recent study, a research team from Singapore demonstrated how the adhesion of plasmodium-infected blood cells is elevated at febrile temperatures. Through dual-micropipette step-pressure technique between P. falciparum-infected RBCs (iRBCs) and Chinese Hamster Ovary cells expressing Chondroitin sulfate A (CHO-CSA), they determined that adhesion is elevated at febrile temperatures. The team also noticed that exposures to febrile temperature significantly increased both the adhesion force and adhesion percentage between iRBCs and CSA-CHO cells.

Using flow cytometry analysis, the team documented an increase in phosphatidylserine expression on the iRBC surface following exposure to febrile temperature. They demonstrate that elevated levels of phosphatidylserine is linked to increased cyto-adhesion, since the trend was reversed by introducing soluble Annexin V. "These results suggest that elevated PS recruitment on iRBC under thermally stressed conditions contributes to the increased adhesive behavior of iRBCs, which might be relevant to clinical manifestations associated with malaria fever," said Dr Rajesh Chandramohanadas from the Singapore University of Technology & Design (SUTD).

###

First author of this study, published in the science journal Scientific Reports, is Dr Rou Zhang from the Infectious Disease IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre. Other investigators involved in this project are Professor Ming Dao (SMART and Massachusetts Institute of Technology), Professor Chwee Teck Lim (SMART & National University of Singapore) and Dr Rajesh Chandramohanadas (SMART and Singapore University of Technology & Design).

Media Contact

Melissa Koh
[email protected]
65-649-98742

http://www.sutd.edu.sg

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-33358-2

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

November 5, 2025
blank

Evaluating PR1 Genes in Mung Bean’s Pathogen Response

November 5, 2025

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

Large Language Models Boost Human-Robot Flexible Scheduling

DNA Repair Deficiency Linked to UTUC Nectin-4

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.