• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UTMB develops a universal vaccine platform that’s cheaper and shelf stable

Bioengineer by Bioengineer
October 5, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

GALVESTON, Texas – Researchers at The University of Texas Medical Branch at Galveston have developed less expensive way to produce vaccines that cuts the costs of vaccine production and storage by up to 80 percent without decreasing safety or effectiveness. The findings are currently available in EBioMedicine.

Vaccines are the most effective way to prevent and eradicate infectious diseases. Currently, many vaccines have to be manufactured in cell culture or eggs, which is expensive and carries the risk of contaminations. In addition, most vaccines must be kept refrigerated during the transportation from manufacturers to health care clinics. In tropical and subtropical regions, such cold storage requirements could contribute to more than 80 percent of the vaccine cost.

"The ability to eliminate cell culture or eggs and cold storage will change the process of vaccine development," said UTMB's Pei-Yong Shi, professor in the department of biochemistry and molecular biology. "Importantly, this vaccine technology could potentially serve as a universal platform for development of live-attenuated vaccines for many viral pathogens."

To achieve these goals, the UTMB team engineered a live-attenuated Zika vaccine in the DNA form. Once the DNA is delivered into our body, it launches the vaccine in our cells, leading to antibody production and other protective immunity. With this production method, there is no need to manufacture the vaccine in cell culture or eggs at factories. Because DNA molecules are shelf stable, the vaccine will not expire at warm temperatures and could be stockpiled at room temperature for years.

Using UTMB's Zika vaccine as a model, the research group showed that the DNA platform worked very efficiently in mice. After a single low dose, the DNA vaccine protected mice from Zika virus infection, mother-to-fetus transmission during pregnancy and male reproductive tract infection and damage.

"This is the first study to demonstrate that, after a single low dose, a DNA vaccine could induce saturated protective immunity," Shi said. "We will continue testing this promising Zika vaccine platform and then apply the platform to other viruses."

###

Other authors include UTMB's Jing Zou, Xuping Xie, Huanle Luo, Chao Shan, Antonio Muruato, Scott Weaver and Tian Wang.

Media Contact

Donna Ramirez
[email protected]
409-772-8791
@utmbnews

http://www.utmb.edu

https://www.utmb.edu/newsroom/article11934.aspx

Share12Tweet8Share2ShareShareShare2

Related Posts

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.